Deflate.cs 68.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
using System;
/*
 * $Id: Deflate.cs,v 1.2 2008-05-10 09:35:40 bouncy Exp $
 *
Copyright (c) 2000,2001,2002,2003 ymnk, JCraft,Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

  1. Redistributions of source code must retain the above copyright notice,
     this list of conditions and the following disclaimer.

  2. Redistributions in binary form must reproduce the above copyright 
     notice, this list of conditions and the following disclaimer in 
     the documentation and/or other materials provided with the distribution.

  3. The names of the authors may not be used to endorse or promote products
     derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JCRAFT,
INC. OR ANY CONTRIBUTORS TO THIS SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
/*
 * This program is based on zlib-1.1.3, so all credit should go authors
 * Jean-loup Gailly(jloup@gzip.org) and Mark Adler(madler@alumni.caltech.edu)
 * and contributors of zlib.
 */

namespace Org.BouncyCastle.Utilities.Zlib {

    public sealed class Deflate{

        private const int MAX_MEM_LEVEL=9;

        private const int Z_DEFAULT_COMPRESSION=-1;

        private const int MAX_WBITS=15;            // 32K LZ77 window
        private const int DEF_MEM_LEVEL=8;

        internal class Config{
            internal int good_length; // reduce lazy search above this match length
            internal int max_lazy;    // do not perform lazy search above this match length
            internal int nice_length; // quit search above this match length
            internal int max_chain;
            internal int func;
            internal Config(int good_length, int max_lazy, 
                int nice_length, int max_chain, int func){
                this.good_length=good_length;
                this.max_lazy=max_lazy;
                this.nice_length=nice_length;
                this.max_chain=max_chain;
                this.func=func;
            }
        }
  
        private const int STORED=0;
        private const int FAST=1;
        private const int SLOW=2;
        private static readonly Config[] config_table;

		static Deflate(){
            config_table=new Config[10];
            //                         good  lazy  nice  chain
            config_table[0]=new Config(0,    0,    0,    0, STORED);
            config_table[1]=new Config(4,    4,    8,    4, FAST);
            config_table[2]=new Config(4,    5,   16,    8, FAST);
            config_table[3]=new Config(4,    6,   32,   32, FAST);

            config_table[4]=new Config(4,    4,   16,   16, SLOW);
            config_table[5]=new Config(8,   16,   32,   32, SLOW);
            config_table[6]=new Config(8,   16,  128,  128, SLOW);
            config_table[7]=new Config(8,   32,  128,  256, SLOW);
            config_table[8]=new Config(32, 128,  258, 1024, SLOW);
            config_table[9]=new Config(32, 258,  258, 4096, SLOW);
        }

        private static readonly String[] z_errmsg = {
                                               "need dictionary",     // Z_NEED_DICT       2
                                               "stream end",          // Z_STREAM_END      1
                                               "",                    // Z_OK              0
                                               "file error",          // Z_ERRNO         (-1)
                                               "stream error",        // Z_STREAM_ERROR  (-2)
                                               "data error",          // Z_DATA_ERROR    (-3)
                                               "insufficient memory", // Z_MEM_ERROR     (-4)
                                               "buffer error",        // Z_BUF_ERROR     (-5)
                                               "incompatible version",// Z_VERSION_ERROR (-6)
                                               ""
                                           };

        // block not completed, need more input or more output
        private const int NeedMore=0; 

        // block flush performed
        private const int BlockDone=1; 

        // finish started, need only more output at next deflate
        private const int FinishStarted=2;

        // finish done, accept no more input or output
        private const int FinishDone=3;

        // preset dictionary flag in zlib header
        private const int PRESET_DICT=0x20;

        private const int Z_FILTERED=1;
        private const int Z_HUFFMAN_ONLY=2;
        private const int Z_DEFAULT_STRATEGY=0;

        private const int Z_NO_FLUSH=0;
        private const int Z_PARTIAL_FLUSH=1;
        private const int Z_SYNC_FLUSH=2;
        private const int Z_FULL_FLUSH=3;
        private const int Z_FINISH=4;

        private const int Z_OK=0;
        private const int Z_STREAM_END=1;
        private const int Z_NEED_DICT=2;
        private const int Z_ERRNO=-1;
        private const int Z_STREAM_ERROR=-2;
        private const int Z_DATA_ERROR=-3;
        private const int Z_MEM_ERROR=-4;
        private const int Z_BUF_ERROR=-5;
        private const int Z_VERSION_ERROR=-6;

        private const int INIT_STATE=42;
        private const int BUSY_STATE=113;
        private const int FINISH_STATE=666;

        // The deflate compression method
        private const int Z_DEFLATED=8;

        private const int STORED_BLOCK=0;
        private const int STATIC_TREES=1;
        private const int DYN_TREES=2;

        // The three kinds of block type
        private const int Z_BINARY=0;
        private const int Z_ASCII=1;
        private const int Z_UNKNOWN=2;

        private const int Buf_size=8*2;

        // repeat previous bit length 3-6 times (2 bits of repeat count)
        private const int REP_3_6=16; 

        // repeat a zero length 3-10 times  (3 bits of repeat count)
        private const int REPZ_3_10=17; 

        // repeat a zero length 11-138 times  (7 bits of repeat count)
        private const int REPZ_11_138=18; 

        private const int MIN_MATCH=3;
        private const int MAX_MATCH=258;
        private const int MIN_LOOKAHEAD=(MAX_MATCH+MIN_MATCH+1);

        private const int MAX_BITS=15;
        private const int D_CODES=30;
        private const int BL_CODES=19;
        private const int LENGTH_CODES=29;
        private const int LITERALS=256;
        private const int L_CODES=(LITERALS+1+LENGTH_CODES);
        private const int HEAP_SIZE=(2*L_CODES+1);

        private const int END_BLOCK=256;

        internal ZStream strm;         // pointer back to this zlib stream
        internal int status;           // as the name implies
        internal byte[] pending_buf;   // output still pending
        internal int pending_buf_size; // size of pending_buf
        internal int pending_out;      // next pending byte to output to the stream
        internal int pending;          // nb of bytes in the pending buffer
        internal int noheader;         // suppress zlib header and adler32
        internal byte data_type;       // UNKNOWN, BINARY or ASCII
        internal byte method;          // STORED (for zip only) or DEFLATED
        internal int last_flush;       // value of flush param for previous deflate call

        internal int w_size;           // LZ77 window size (32K by default)
        internal int w_bits;           // log2(w_size)  (8..16)
        internal int w_mask;           // w_size - 1

        internal byte[] window;
        // Sliding window. Input bytes are read into the second half of the window,
        // and move to the first half later to keep a dictionary of at least wSize
        // bytes. With this organization, matches are limited to a distance of
        // wSize-MAX_MATCH bytes, but this ensures that IO is always
        // performed with a length multiple of the block size. Also, it limits
        // the window size to 64K, which is quite useful on MSDOS.
        // To do: use the user input buffer as sliding window.

        internal int window_size;
        // Actual size of window: 2*wSize, except when the user input buffer
        // is directly used as sliding window.

        internal short[] prev;
        // Link to older string with same hash index. To limit the size of this
        // array to 64K, this link is maintained only for the last 32K strings.
        // An index in this array is thus a window index modulo 32K.

        internal short[] head; // Heads of the hash chains or NIL.

        internal int ins_h;          // hash index of string to be inserted
        internal int hash_size;      // number of elements in hash table
        internal int hash_bits;      // log2(hash_size)
        internal int hash_mask;      // hash_size-1

        // Number of bits by which ins_h must be shifted at each input
        // step. It must be such that after MIN_MATCH steps, the oldest
        // byte no longer takes part in the hash key, that is:
        // hash_shift * MIN_MATCH >= hash_bits
        internal int hash_shift;

        // Window position at the beginning of the current output block. Gets
        // negative when the window is moved backwards.

        internal int block_start;

        internal int match_length;           // length of best match
        internal int prev_match;             // previous match
        internal int match_available;        // set if previous match exists
        internal int strstart;               // start of string to insert
        internal int match_start;            // start of matching string
        internal int lookahead;              // number of valid bytes ahead in window

        // Length of the best match at previous step. Matches not greater than this
        // are discarded. This is used in the lazy match evaluation.
        internal int prev_length;

        // To speed up deflation, hash chains are never searched beyond this
        // length.  A higher limit improves compression ratio but degrades the speed.
        internal int max_chain_length;

        // Attempt to find a better match only when the current match is strictly
        // smaller than this value. This mechanism is used only for compression
        // levels >= 4.
        internal int max_lazy_match;

        // Insert new strings in the hash table only if the match length is not
        // greater than this length. This saves time but degrades compression.
        // max_insert_length is used only for compression levels <= 3.

        internal int level;    // compression level (1..9)
        internal int strategy; // favor or force Huffman coding

        // Use a faster search when the previous match is longer than this
        internal int good_match;

        // Stop searching when current match exceeds this
        internal int nice_match;

        internal short[] dyn_ltree;       // literal and length tree
        internal short[] dyn_dtree;       // distance tree
        internal short[] bl_tree;         // Huffman tree for bit lengths

        internal Tree l_desc=new Tree();  // desc for literal tree
        internal Tree d_desc=new Tree();  // desc for distance tree
        internal Tree bl_desc=new Tree(); // desc for bit length tree

        // number of codes at each bit length for an optimal tree
        internal short[] bl_count=new short[MAX_BITS+1];

        // heap used to build the Huffman trees
        internal int[] heap=new int[2*L_CODES+1];

        internal int heap_len;               // number of elements in the heap
        internal int heap_max;               // element of largest frequency
        // The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
        // The same heap array is used to build all trees.

        // Depth of each subtree used as tie breaker for trees of equal frequency
        internal byte[] depth=new byte[2*L_CODES+1];

        internal int l_buf;               // index for literals or lengths */

        // Size of match buffer for literals/lengths.  There are 4 reasons for
        // limiting lit_bufsize to 64K:
        //   - frequencies can be kept in 16 bit counters
        //   - if compression is not successful for the first block, all input
        //     data is still in the window so we can still emit a stored block even
        //     when input comes from standard input.  (This can also be done for
        //     all blocks if lit_bufsize is not greater than 32K.)
        //   - if compression is not successful for a file smaller than 64K, we can
        //     even emit a stored file instead of a stored block (saving 5 bytes).
        //     This is applicable only for zip (not gzip or zlib).
        //   - creating new Huffman trees less frequently may not provide fast
        //     adaptation to changes in the input data statistics. (Take for
        //     example a binary file with poorly compressible code followed by
        //     a highly compressible string table.) Smaller buffer sizes give
        //     fast adaptation but have of course the overhead of transmitting
        //     trees more frequently.
        //   - I can't count above 4
        internal int lit_bufsize;

        internal int last_lit;      // running index in l_buf

        // Buffer for distances. To simplify the code, d_buf and l_buf have
        // the same number of elements. To use different lengths, an extra flag
        // array would be necessary.

        internal int d_buf;         // index of pendig_buf

        internal int opt_len;        // bit length of current block with optimal trees
        internal int static_len;     // bit length of current block with static trees
        internal int matches;        // number of string matches in current block
        internal int last_eob_len;   // bit length of EOB code for last block

        // Output buffer. bits are inserted starting at the bottom (least
        // significant bits).
        internal uint bi_buf;

        // Number of valid bits in bi_buf.  All bits above the last valid bit
        // are always zero.
        internal int bi_valid;

        internal Deflate(){
            dyn_ltree=new short[HEAP_SIZE*2];
            dyn_dtree=new short[(2*D_CODES+1)*2]; // distance tree
            bl_tree=new short[(2*BL_CODES+1)*2];  // Huffman tree for bit lengths
        }

        internal void lm_init() {
            window_size=2*w_size;

            head[hash_size-1]=0;
            for(int i=0; i<hash_size-1; i++){
                head[i]=0;
            }

            // Set the default configuration parameters:
            max_lazy_match   = Deflate.config_table[level].max_lazy;
            good_match       = Deflate.config_table[level].good_length;
            nice_match       = Deflate.config_table[level].nice_length;
            max_chain_length = Deflate.config_table[level].max_chain;

            strstart = 0;
            block_start = 0;
            lookahead = 0;
            match_length = prev_length = MIN_MATCH-1;
            match_available = 0;
            ins_h = 0;
        }

        // Initialize the tree data structures for a new zlib stream.
        internal void tr_init(){

            l_desc.dyn_tree = dyn_ltree;
            l_desc.stat_desc = StaticTree.static_l_desc;

            d_desc.dyn_tree = dyn_dtree;
            d_desc.stat_desc = StaticTree.static_d_desc;

            bl_desc.dyn_tree = bl_tree;
            bl_desc.stat_desc = StaticTree.static_bl_desc;

            bi_buf = 0;
            bi_valid = 0;
            last_eob_len = 8; // enough lookahead for inflate

            // Initialize the first block of the first file:
            init_block();
        }

        internal void init_block(){
            // Initialize the trees.
            for(int i = 0; i < L_CODES; i++) dyn_ltree[i*2] = 0;
            for(int i= 0; i < D_CODES; i++) dyn_dtree[i*2] = 0;
            for(int i= 0; i < BL_CODES; i++) bl_tree[i*2] = 0;

            dyn_ltree[END_BLOCK*2] = 1;
            opt_len = static_len = 0;
            last_lit = matches = 0;
        }

        // Restore the heap property by moving down the tree starting at node k,
        // exchanging a node with the smallest of its two sons if necessary, stopping
        // when the heap property is re-established (each father smaller than its
        // two sons).
        internal void pqdownheap(short[] tree,  // the tree to restore
            int k          // node to move down
            ){
            int v = heap[k];
            int j = k << 1;  // left son of k
            while (j <= heap_len) {
                // Set j to the smallest of the two sons:
                if (j < heap_len &&
                    smaller(tree, heap[j+1], heap[j], depth)){
                    j++;
                }
                // Exit if v is smaller than both sons
                if(smaller(tree, v, heap[j], depth)) break;

                // Exchange v with the smallest son
                heap[k]=heap[j];  k = j;
                // And continue down the tree, setting j to the left son of k
                j <<= 1;
            }
            heap[k] = v;
        }

        internal static bool smaller(short[] tree, int n, int m, byte[] depth){
            short tn2=tree[n*2];
            short tm2=tree[m*2];
            return (tn2<tm2 ||
                (tn2==tm2 && depth[n] <= depth[m]));
        }

        // Scan a literal or distance tree to determine the frequencies of the codes
        // in the bit length tree.
        internal void scan_tree (short[] tree,// the tree to be scanned
            int max_code // and its largest code of non zero frequency
            ){
            int n;                     // iterates over all tree elements
            int prevlen = -1;          // last emitted length
            int curlen;                // length of current code
            int nextlen = tree[0*2+1]; // length of next code
            int count = 0;             // repeat count of the current code
            int max_count = 7;         // max repeat count
            int min_count = 4;         // min repeat count

            if (nextlen == 0){ max_count = 138; min_count = 3; }
            tree[(max_code+1)*2+1] = -1; // guard

            for(n = 0; n <= max_code; n++) {
                curlen = nextlen; nextlen = tree[(n+1)*2+1];
                if(++count < max_count && curlen == nextlen) {
                    continue;
                }
                else if(count < min_count) {
                    bl_tree[curlen*2] += (short)count;
                }
                else if(curlen != 0) {
                    if(curlen != prevlen) bl_tree[curlen*2]++;
                    bl_tree[REP_3_6*2]++;
                }
                else if(count <= 10) {
                    bl_tree[REPZ_3_10*2]++;
                }
                else{
                    bl_tree[REPZ_11_138*2]++;
                }
                count = 0; prevlen = curlen;
                if(nextlen == 0) {
                    max_count = 138; min_count = 3;
                }
                else if(curlen == nextlen) {
                    max_count = 6; min_count = 3;
                }
                else{
                    max_count = 7; min_count = 4;
                }
            }
        }

        // Construct the Huffman tree for the bit lengths and return the index in
        // bl_order of the last bit length code to send.
        internal int build_bl_tree(){
            int max_blindex;  // index of last bit length code of non zero freq

            // Determine the bit length frequencies for literal and distance trees
            scan_tree(dyn_ltree, l_desc.max_code);
            scan_tree(dyn_dtree, d_desc.max_code);

            // Build the bit length tree:
            bl_desc.build_tree(this);
            // opt_len now includes the length of the tree representations, except
            // the lengths of the bit lengths codes and the 5+5+4 bits for the counts.

            // Determine the number of bit length codes to send. The pkzip format
            // requires that at least 4 bit length codes be sent. (appnote.txt says
            // 3 but the actual value used is 4.)
            for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
                if (bl_tree[Tree.bl_order[max_blindex]*2+1] != 0) break;
            }
            // Update opt_len to include the bit length tree and counts
            opt_len += 3*(max_blindex+1) + 5+5+4;

            return max_blindex;
        }


        // Send the header for a block using dynamic Huffman trees: the counts, the
        // lengths of the bit length codes, the literal tree and the distance tree.
        // IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
        internal void send_all_trees(int lcodes, int dcodes, int blcodes){
            int rank;                    // index in bl_order

            send_bits(lcodes-257, 5); // not +255 as stated in appnote.txt
            send_bits(dcodes-1,   5);
            send_bits(blcodes-4,  4); // not -3 as stated in appnote.txt
            for (rank = 0; rank < blcodes; rank++) {
                send_bits(bl_tree[Tree.bl_order[rank]*2+1], 3);
            }
            send_tree(dyn_ltree, lcodes-1); // literal tree
            send_tree(dyn_dtree, dcodes-1); // distance tree
        }

        // Send a literal or distance tree in compressed form, using the codes in
        // bl_tree.
        internal void send_tree (short[] tree,// the tree to be sent
            int max_code // and its largest code of non zero frequency
            ){
            int n;                     // iterates over all tree elements
            int prevlen = -1;          // last emitted length
            int curlen;                // length of current code
            int nextlen = tree[0*2+1]; // length of next code
            int count = 0;             // repeat count of the current code
            int max_count = 7;         // max repeat count
            int min_count = 4;         // min repeat count

            if (nextlen == 0){ max_count = 138; min_count = 3; }

            for (n = 0; n <= max_code; n++) {
                curlen = nextlen; nextlen = tree[(n+1)*2+1];
                if(++count < max_count && curlen == nextlen) {
                    continue;
                }
                else if(count < min_count) {
                    do { send_code(curlen, bl_tree); } while (--count != 0);
                }
                else if(curlen != 0){
                    if(curlen != prevlen){
                        send_code(curlen, bl_tree); count--;
                    }
                    send_code(REP_3_6, bl_tree); 
                    send_bits(count-3, 2);
                }
                else if(count <= 10){
                    send_code(REPZ_3_10, bl_tree); 
                    send_bits(count-3, 3);
                }
                else{
                    send_code(REPZ_11_138, bl_tree);
                    send_bits(count-11, 7);
                }
                count = 0; prevlen = curlen;
                if(nextlen == 0){
                    max_count = 138; min_count = 3;
                }
                else if(curlen == nextlen){
                    max_count = 6; min_count = 3;
                }
                else{
                    max_count = 7; min_count = 4;
                }
            }
        }

        // Output a byte on the stream.
        // IN assertion: there is enough room in pending_buf.
        internal void put_byte(byte[] p, int start, int len){
            System.Array.Copy(p, start, pending_buf, pending, len);
            pending+=len;
        }

        internal void put_byte(byte c){
            pending_buf[pending++]=c;
        }
        internal void put_short(int w) {
            pending_buf[pending++]=(byte)(w/*&0xff*/);
            pending_buf[pending++]=(byte)(w>>8);
        }
        internal void putShortMSB(int b){
            pending_buf[pending++]=(byte)(b>>8);
            pending_buf[pending++]=(byte)(b/*&0xff*/);
        }   

        internal void send_code(int c, short[] tree){
            int c2=c*2;
            send_bits((tree[c2]&0xffff), (tree[c2+1]&0xffff));
        }

        internal void send_bits(int val, int length){
            if (bi_valid > Buf_size - length) {
                bi_buf |= (uint)(val << bi_valid);
                pending_buf[pending++]=(byte)(bi_buf/*&0xff*/);
                pending_buf[pending++]=(byte)(bi_buf>>8);
                bi_buf = ((uint)val) >> (Buf_size - bi_valid);
                bi_valid += length - Buf_size;
            } else {
                bi_buf |= (uint)(val << bi_valid);
                bi_valid += length;
            }
//            int len = length;
//            if (bi_valid > (int)Buf_size - len) {
//                int val = value;
//                //      bi_buf |= (val << bi_valid);
//                bi_buf = (short)((ushort)bi_buf | (ushort)((val << bi_valid)&0xffff));
//                put_short(bi_buf);
//                bi_buf = (short)(((uint)val) >> (Buf_size - bi_valid));
//                bi_valid += len - Buf_size;
//            } else {
//                //      bi_buf |= (value) << bi_valid;
//                bi_buf = (short)((ushort)bi_buf | (ushort)(((value) << bi_valid)&0xffff));
//                bi_valid += len;
//            }
        }

        // Send one empty static block to give enough lookahead for inflate.
        // This takes 10 bits, of which 7 may remain in the bit buffer.
        // The current inflate code requires 9 bits of lookahead. If the
        // last two codes for the previous block (real code plus EOB) were coded
        // on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
        // the last real code. In this case we send two empty static blocks instead
        // of one. (There are no problems if the previous block is stored or fixed.)
        // To simplify the code, we assume the worst case of last real code encoded
        // on one bit only.
        internal void _tr_align(){
            send_bits(STATIC_TREES<<1, 3);
            send_code(END_BLOCK, StaticTree.static_ltree);

            bi_flush();

            // Of the 10 bits for the empty block, we have already sent
            // (10 - bi_valid) bits. The lookahead for the last real code (before
            // the EOB of the previous block) was thus at least one plus the length
            // of the EOB plus what we have just sent of the empty static block.
            if (1 + last_eob_len + 10 - bi_valid < 9) {
                send_bits(STATIC_TREES<<1, 3);
                send_code(END_BLOCK, StaticTree.static_ltree);
                bi_flush();
            }
            last_eob_len = 7;
        }


        // Save the match info and tally the frequency counts. Return true if
        // the current block must be flushed.
        internal bool _tr_tally (int dist, // distance of matched string
            int lc // match length-MIN_MATCH or unmatched char (if dist==0)
            ){

            pending_buf[d_buf+last_lit*2] = (byte)(dist>>8);
            pending_buf[d_buf+last_lit*2+1] = (byte)dist;

            pending_buf[l_buf+last_lit] = (byte)lc; last_lit++;

            if (dist == 0) {
                // lc is the unmatched char
                dyn_ltree[lc*2]++;
            } 
            else {
                matches++;
                // Here, lc is the match length - MIN_MATCH
                dist--;             // dist = match distance - 1
                dyn_ltree[(Tree._length_code[lc]+LITERALS+1)*2]++;
                dyn_dtree[Tree.d_code(dist)*2]++;
            }

            if ((last_lit & 0x1fff) == 0 && level > 2) {
                // Compute an upper bound for the compressed length
                int out_length = last_lit*8;
                int in_length = strstart - block_start;
                int dcode;
                for (dcode = 0; dcode < D_CODES; dcode++) {
                    out_length += (int)((int)dyn_dtree[dcode*2] *
                        (5L+Tree.extra_dbits[dcode]));
                }
                out_length >>= 3;
                if ((matches < (last_lit/2)) && out_length < in_length/2) return true;
            }

            return (last_lit == lit_bufsize-1);
            // We avoid equality with lit_bufsize because of wraparound at 64K
            // on 16 bit machines and because stored blocks are restricted to
            // 64K-1 bytes.
        }

        // Send the block data compressed using the given Huffman trees
        internal void compress_block(short[] ltree, short[] dtree){
            int  dist;      // distance of matched string
            int lc;         // match length or unmatched char (if dist == 0)
            int lx = 0;     // running index in l_buf
            int code;       // the code to send
            int extra;      // number of extra bits to send

            if (last_lit != 0){
                do{
                    dist=((pending_buf[d_buf+lx*2]<<8)&0xff00)|
                        (pending_buf[d_buf+lx*2+1]&0xff);
                    lc=(pending_buf[l_buf+lx])&0xff; lx++;

                    if(dist == 0){
                        send_code(lc, ltree); // send a literal byte
                    } 
                    else{
                        // Here, lc is the match length - MIN_MATCH
                        code = Tree._length_code[lc];

                        send_code(code+LITERALS+1, ltree); // send the length code
                        extra = Tree.extra_lbits[code];
                        if(extra != 0){
                            lc -= Tree.base_length[code];
                            send_bits(lc, extra);       // send the extra length bits
                        }
                        dist--; // dist is now the match distance - 1
                        code = Tree.d_code(dist);

                        send_code(code, dtree);       // send the distance code
                        extra = Tree.extra_dbits[code];
                        if (extra != 0) {
                            dist -= Tree.base_dist[code];
                            send_bits(dist, extra);   // send the extra distance bits
                        }
                    } // literal or match pair ?

                    // Check that the overlay between pending_buf and d_buf+l_buf is ok:
                }
                while (lx < last_lit);
            }

            send_code(END_BLOCK, ltree);
            last_eob_len = ltree[END_BLOCK*2+1];
        }

        // Set the data type to ASCII or BINARY, using a crude approximation:
        // binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
        // IN assertion: the fields freq of dyn_ltree are set and the total of all
        // frequencies does not exceed 64K (to fit in an int on 16 bit machines).
        internal void set_data_type(){
            int n = 0;
            int  ascii_freq = 0;
            int  bin_freq = 0;
            while(n<7){ bin_freq += dyn_ltree[n*2]; n++;}
            while(n<128){ ascii_freq += dyn_ltree[n*2]; n++;}
            while(n<LITERALS){ bin_freq += dyn_ltree[n*2]; n++;}
            data_type=(byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
        }

        // Flush the bit buffer, keeping at most 7 bits in it.
        internal void bi_flush(){
            if (bi_valid == 16) {
                pending_buf[pending++]=(byte)(bi_buf/*&0xff*/);
                pending_buf[pending++]=(byte)(bi_buf>>8);
                bi_buf=0;
                bi_valid=0;
            }
            else if (bi_valid >= 8) {
                pending_buf[pending++]=(byte)(bi_buf);
                bi_buf>>=8;
                bi_buf &= 0x00ff;
                bi_valid-=8;
            }
        }

        // Flush the bit buffer and align the output on a byte boundary
        internal void bi_windup(){
            if (bi_valid > 8) {
                pending_buf[pending++]=(byte)(bi_buf);
                pending_buf[pending++]=(byte)(bi_buf>>8);
            } else if (bi_valid > 0) {
                pending_buf[pending++]=(byte)(bi_buf);
            }
            bi_buf = 0;
            bi_valid = 0;
        }

        // Copy a stored block, storing first the length and its
        // one's complement if requested.
        internal void copy_block(int buf,         // the input data
            int len,         // its length
            bool header   // true if block header must be written
            ){
            //int index=0;
            bi_windup();      // align on byte boundary
            last_eob_len = 8; // enough lookahead for inflate

            if (header) {
                put_short((short)len);   
                put_short((short)~len);
            }

            //  while(len--!=0) {
            //    put_byte(window[buf+index]);
            //    index++;
            //  }
            put_byte(window, buf, len);
        }

        internal void flush_block_only(bool eof){
            _tr_flush_block(block_start>=0 ? block_start : -1,
                strstart-block_start,
                eof);
            block_start=strstart;
            strm.flush_pending();
        }

        // Copy without compression as much as possible from the input stream, return
        // the current block state.
        // This function does not insert new strings in the dictionary since
        // uncompressible data is probably not useful. This function is used
        // only for the level=0 compression option.
        // NOTE: this function should be optimized to avoid extra copying from
        // window to pending_buf.
        internal int deflate_stored(int flush){
            // Stored blocks are limited to 0xffff bytes, pending_buf is limited
            // to pending_buf_size, and each stored block has a 5 byte header:

            int max_block_size = 0xffff;
            int max_start;

            if(max_block_size > pending_buf_size - 5) {
                max_block_size = pending_buf_size - 5;
            }

            // Copy as much as possible from input to output:
            while(true){
                // Fill the window as much as possible:
                if(lookahead<=1){
                    fill_window();
                    if(lookahead==0 && flush==Z_NO_FLUSH) return NeedMore;
                    if(lookahead==0) break; // flush the current block
                }

                strstart+=lookahead;
                lookahead=0;

                // Emit a stored block if pending_buf will be full:
                max_start=block_start+max_block_size;
                if(strstart==0|| strstart>=max_start) {
                    // strstart == 0 is possible when wraparound on 16-bit machine
                    lookahead = (int)(strstart-max_start);
                    strstart = (int)max_start;
      
                    flush_block_only(false);
                    if(strm.avail_out==0) return NeedMore;

                }

                // Flush if we may have to slide, otherwise block_start may become
                // negative and the data will be gone:
                if(strstart-block_start >= w_size-MIN_LOOKAHEAD) {
                    flush_block_only(false);
                    if(strm.avail_out==0) return NeedMore;
                }
            }

            flush_block_only(flush == Z_FINISH);
            if(strm.avail_out==0)
                return (flush == Z_FINISH) ? FinishStarted : NeedMore;

            return flush == Z_FINISH ? FinishDone : BlockDone;
        }

        // Send a stored block
        internal void _tr_stored_block(int buf,        // input block
            int stored_len, // length of input block
            bool eof     // true if this is the last block for a file
            ){
            send_bits((STORED_BLOCK<<1)+(eof?1:0), 3);  // send block type
            copy_block(buf, stored_len, true);          // with header
        }

        // Determine the best encoding for the current block: dynamic trees, static
        // trees or store, and output the encoded block to the zip file.
        internal void _tr_flush_block(int buf,        // input block, or NULL if too old
            int stored_len, // length of input block
            bool eof     // true if this is the last block for a file
            ) {
            int opt_lenb, static_lenb;// opt_len and static_len in bytes
            int max_blindex = 0;      // index of last bit length code of non zero freq

            // Build the Huffman trees unless a stored block is forced
            if(level > 0) {
                // Check if the file is ascii or binary
                if(data_type == Z_UNKNOWN) set_data_type();

                // Construct the literal and distance trees
                l_desc.build_tree(this);

                d_desc.build_tree(this);

                // At this point, opt_len and static_len are the total bit lengths of
                // the compressed block data, excluding the tree representations.

                // Build the bit length tree for the above two trees, and get the index
                // in bl_order of the last bit length code to send.
                max_blindex=build_bl_tree();

                // Determine the best encoding. Compute first the block length in bytes
                opt_lenb=(opt_len+3+7)>>3;
                static_lenb=(static_len+3+7)>>3;

                if(static_lenb<=opt_lenb) opt_lenb=static_lenb;
            }
            else {
                opt_lenb=static_lenb=stored_len+5; // force a stored block
            }

            if(stored_len+4<=opt_lenb && buf != -1){
                // 4: two words for the lengths
                // The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
                // Otherwise we can't have processed more than WSIZE input bytes since
                // the last block flush, because compression would have been
                // successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
                // transform a block into a stored block.
                _tr_stored_block(buf, stored_len, eof);
            }
            else if(static_lenb == opt_lenb){
                send_bits((STATIC_TREES<<1)+(eof?1:0), 3);
                compress_block(StaticTree.static_ltree, StaticTree.static_dtree);
            }
            else{
                send_bits((DYN_TREES<<1)+(eof?1:0), 3);
                send_all_trees(l_desc.max_code+1, d_desc.max_code+1, max_blindex+1);
                compress_block(dyn_ltree, dyn_dtree);
            }

            // The above check is made mod 2^32, for files larger than 512 MB
            // and uLong implemented on 32 bits.

            init_block();

            if(eof){
                bi_windup();
            }
        }

        // Fill the window when the lookahead becomes insufficient.
        // Updates strstart and lookahead.
        //
        // IN assertion: lookahead < MIN_LOOKAHEAD
        // OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
        //    At least one byte has been read, or avail_in == 0; reads are
        //    performed for at least two bytes (required for the zip translate_eol
        //    option -- not supported here).
        internal void fill_window(){
            int n, m;
            int p;
            int more;    // Amount of free space at the end of the window.

            do{
                more = (window_size-lookahead-strstart);

                // Deal with !@#$% 64K limit:
                if(more==0 && strstart==0 && lookahead==0){
                    more = w_size;
                } 
                else if(more==-1) {
                    // Very unlikely, but possible on 16 bit machine if strstart == 0
                    // and lookahead == 1 (input done one byte at time)
                    more--;

                    // If the window is almost full and there is insufficient lookahead,
                    // move the upper half to the lower one to make room in the upper half.
                }
                else if(strstart >= w_size+ w_size-MIN_LOOKAHEAD) {
                    System.Array.Copy(window, w_size, window, 0, w_size);
                    match_start-=w_size;
                    strstart-=w_size; // we now have strstart >= MAX_DIST
                    block_start-=w_size;

                    // Slide the hash table (could be avoided with 32 bit values
                    // at the expense of memory usage). We slide even when level == 0
                    // to keep the hash table consistent if we switch back to level > 0
                    // later. (Using level 0 permanently is not an optimal usage of
                    // zlib, so we don't care about this pathological case.)

                    n = hash_size;
                    p=n;
                    do {
                        m = (head[--p]&0xffff);
                        head[p]=(short)(m>=w_size ? (m-w_size) : 0);
                    }
                    while (--n != 0);

                    n = w_size;
                    p = n;
                    do {
                        m = (prev[--p]&0xffff);
                        prev[p] = (short)(m >= w_size ? (m-w_size) : 0);
                        // If n is not on any hash chain, prev[n] is garbage but
                        // its value will never be used.
                    }
                    while (--n!=0);
                    more += w_size;
                }

                if (strm.avail_in == 0) return;

                // If there was no sliding:
                //    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
                //    more == window_size - lookahead - strstart
                // => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
                // => more >= window_size - 2*WSIZE + 2
                // In the BIG_MEM or MMAP case (not yet supported),
                //   window_size == input_size + MIN_LOOKAHEAD  &&
                //   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
                // Otherwise, window_size == 2*WSIZE so more >= 2.
                // If there was sliding, more >= WSIZE. So in all cases, more >= 2.

                n = strm.read_buf(window, strstart + lookahead, more);
                lookahead += n;

                // Initialize the hash value now that we have some input:
                if(lookahead >= MIN_MATCH) {
                    ins_h = window[strstart]&0xff;
                    ins_h=(((ins_h)<<hash_shift)^(window[strstart+1]&0xff))&hash_mask;
                }
                // If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
                // but this is not important since only literal bytes will be emitted.
            }
            while (lookahead < MIN_LOOKAHEAD && strm.avail_in != 0);
        }

        // Compress as much as possible from the input stream, return the current
        // block state.
        // This function does not perform lazy evaluation of matches and inserts
        // new strings in the dictionary only for unmatched strings or for short
        // matches. It is used only for the fast compression options.
        internal int deflate_fast(int flush){
            //    short hash_head = 0; // head of the hash chain
            int hash_head = 0; // head of the hash chain
            bool bflush;      // set if current block must be flushed

            while(true){
                // Make sure that we always have enough lookahead, except
                // at the end of the input file. We need MAX_MATCH bytes
                // for the next match, plus MIN_MATCH bytes to insert the
                // string following the next match.
                if(lookahead < MIN_LOOKAHEAD){
                    fill_window();
                    if(lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH){
                        return NeedMore;
                    }
                    if(lookahead == 0) break; // flush the current block
                }

                // Insert the string window[strstart .. strstart+2] in the
                // dictionary, and set hash_head to the head of the hash chain:
                if(lookahead >= MIN_MATCH){
                    ins_h=(((ins_h)<<hash_shift)^(window[(strstart)+(MIN_MATCH-1)]&0xff))&hash_mask;

                    //  prev[strstart&w_mask]=hash_head=head[ins_h];
                    hash_head=(head[ins_h]&0xffff);
                    prev[strstart&w_mask]=head[ins_h];
                    head[ins_h]=(short)strstart;
                }

                // Find the longest match, discarding those <= prev_length.
                // At this point we have always match_length < MIN_MATCH

                if(hash_head!=0L && 
                    ((strstart-hash_head)&0xffff) <= w_size-MIN_LOOKAHEAD
                    ){
                    // To simplify the code, we prevent matches with the string
                    // of window index 0 (in particular we have to avoid a match
                    // of the string with itself at the start of the input file).
                    if(strategy != Z_HUFFMAN_ONLY){
                        match_length=longest_match (hash_head);
                    }
                    // longest_match() sets match_start
                }
                if(match_length>=MIN_MATCH){
                    //        check_match(strstart, match_start, match_length);

                    bflush=_tr_tally(strstart-match_start, match_length-MIN_MATCH);

                    lookahead -= match_length;

                    // Insert new strings in the hash table only if the match length
                    // is not too large. This saves time but degrades compression.
                    if(match_length <= max_lazy_match &&
                        lookahead >= MIN_MATCH) {
                        match_length--; // string at strstart already in hash table
                        do{
                            strstart++;

                            ins_h=((ins_h<<hash_shift)^(window[(strstart)+(MIN_MATCH-1)]&0xff))&hash_mask;
                            //      prev[strstart&w_mask]=hash_head=head[ins_h];
                            hash_head=(head[ins_h]&0xffff);
                            prev[strstart&w_mask]=head[ins_h];
                            head[ins_h]=(short)strstart;

                            // strstart never exceeds WSIZE-MAX_MATCH, so there are
                            // always MIN_MATCH bytes ahead.
                        }
                        while (--match_length != 0);
                        strstart++; 
                    }
                    else{
                        strstart += match_length;
                        match_length = 0;
                        ins_h = window[strstart]&0xff;

                        ins_h=(((ins_h)<<hash_shift)^(window[strstart+1]&0xff))&hash_mask;
                        // If lookahead < MIN_MATCH, ins_h is garbage, but it does not
                        // matter since it will be recomputed at next deflate call.
                    }
                }
                else {
                    // No match, output a literal byte

                    bflush=_tr_tally(0, window[strstart]&0xff);
                    lookahead--;
                    strstart++; 
                }
                if (bflush){

                    flush_block_only(false);
                    if(strm.avail_out==0) return NeedMore;
                }
            }

            flush_block_only(flush == Z_FINISH);
            if(strm.avail_out==0){
                if(flush == Z_FINISH) return FinishStarted;
                else return NeedMore;
            }
            return flush==Z_FINISH ? FinishDone : BlockDone;
        }

        // Same as above, but achieves better compression. We use a lazy
        // evaluation for matches: a match is finally adopted only if there is
        // no better match at the next window position.
        internal int deflate_slow(int flush){
            //    short hash_head = 0;    // head of hash chain
            int hash_head = 0;    // head of hash chain
            bool bflush;         // set if current block must be flushed

            // Process the input block.
            while(true){
                // Make sure that we always have enough lookahead, except
                // at the end of the input file. We need MAX_MATCH bytes
                // for the next match, plus MIN_MATCH bytes to insert the
                // string following the next match.

                if (lookahead < MIN_LOOKAHEAD) {
                    fill_window();
                    if(lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
                        return NeedMore;
                    }
                    if(lookahead == 0) break; // flush the current block
                }

                // Insert the string window[strstart .. strstart+2] in the
                // dictionary, and set hash_head to the head of the hash chain:

                if(lookahead >= MIN_MATCH) {
                    ins_h=(((ins_h)<<hash_shift)^(window[(strstart)+(MIN_MATCH-1)]&0xff)) & hash_mask;
                    //  prev[strstart&w_mask]=hash_head=head[ins_h];
                    hash_head=(head[ins_h]&0xffff);
                    prev[strstart&w_mask]=head[ins_h];
                    head[ins_h]=(short)strstart;
                }

                // Find the longest match, discarding those <= prev_length.
                prev_length = match_length; prev_match = match_start;
                match_length = MIN_MATCH-1;

                if (hash_head != 0 && prev_length < max_lazy_match &&
                    ((strstart-hash_head)&0xffff) <= w_size-MIN_LOOKAHEAD
                    ){
                    // To simplify the code, we prevent matches with the string
                    // of window index 0 (in particular we have to avoid a match
                    // of the string with itself at the start of the input file).

                    if(strategy != Z_HUFFMAN_ONLY) {
                        match_length = longest_match(hash_head);
                    }
                    // longest_match() sets match_start

                    if (match_length <= 5 && (strategy == Z_FILTERED ||
                        (match_length == MIN_MATCH &&
                        strstart - match_start > 4096))) {

                        // If prev_match is also MIN_MATCH, match_start is garbage
                        // but we will ignore the current match anyway.
                        match_length = MIN_MATCH-1;
                    }
                }

                // If there was a match at the previous step and the current
                // match is not better, output the previous match:
                if(prev_length >= MIN_MATCH && match_length <= prev_length) {
                    int max_insert = strstart + lookahead - MIN_MATCH;
                    // Do not insert strings in hash table beyond this.

                    //          check_match(strstart-1, prev_match, prev_length);

                    bflush=_tr_tally(strstart-1-prev_match, prev_length - MIN_MATCH);

                    // Insert in hash table all strings up to the end of the match.
                    // strstart-1 and strstart are already inserted. If there is not
                    // enough lookahead, the last two strings are not inserted in
                    // the hash table.
                    lookahead -= prev_length-1;
                    prev_length -= 2;
                    do{
                        if(++strstart <= max_insert) {
                            ins_h=(((ins_h)<<hash_shift)^(window[(strstart)+(MIN_MATCH-1)]&0xff))&hash_mask;
                            //prev[strstart&w_mask]=hash_head=head[ins_h];
                            hash_head=(head[ins_h]&0xffff);
                            prev[strstart&w_mask]=head[ins_h];
                            head[ins_h]=(short)strstart;
                        }
                    }
                    while(--prev_length != 0);
                    match_available = 0;
                    match_length = MIN_MATCH-1;
                    strstart++;

                    if (bflush){
                        flush_block_only(false);
                        if(strm.avail_out==0) return NeedMore;
                    }
                } else if (match_available!=0) {

                    // If there was no match at the previous position, output a
                    // single literal. If there was a match but the current match
                    // is longer, truncate the previous match to a single literal.

                    bflush=_tr_tally(0, window[strstart-1]&0xff);

                    if (bflush) {
                        flush_block_only(false);
                    }
                    strstart++;
                    lookahead--;
                    if(strm.avail_out == 0) return NeedMore;
                } else {
                    // There is no previous match to compare with, wait for
                    // the next step to decide.

                    match_available = 1;
                    strstart++;
                    lookahead--;
                }
            }

            if(match_available!=0) {
                bflush=_tr_tally(0, window[strstart-1]&0xff);
                match_available = 0;
            }
            flush_block_only(flush == Z_FINISH);

            if(strm.avail_out==0){
                if(flush == Z_FINISH) return FinishStarted;
                else return NeedMore;
            }

            return flush == Z_FINISH ? FinishDone : BlockDone;
        }

        internal int longest_match(int cur_match){
            int chain_length = max_chain_length; // max hash chain length
            int scan = strstart;                 // current string
            int match;                           // matched string
            int len;                             // length of current match
            int best_len = prev_length;          // best match length so far
            int limit = strstart>(w_size-MIN_LOOKAHEAD) ?
                strstart-(w_size-MIN_LOOKAHEAD) : 0;
            int nice_match=this.nice_match;

            // Stop when cur_match becomes <= limit. To simplify the code,
            // we prevent matches with the string of window index 0.

            int wmask = w_mask;

            int strend = strstart + MAX_MATCH;
            byte scan_end1 = window[scan+best_len-1];
            byte scan_end = window[scan+best_len];

            // The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
            // It is easy to get rid of this optimization if necessary.

            // Do not waste too much time if we already have a good match:
            if (prev_length >= good_match) {
                chain_length >>= 2;
            }

            // Do not look for matches beyond the end of the input. This is necessary
            // to make deflate deterministic.
            if (nice_match > lookahead) nice_match = lookahead;

            do {
                match = cur_match;

                // Skip to next match if the match length cannot increase
                // or if the match length is less than 2:
                if (window[match+best_len]   != scan_end  ||
                    window[match+best_len-1] != scan_end1 ||
                    window[match]       != window[scan]     ||
                    window[++match]     != window[scan+1])      continue;

                // The check at best_len-1 can be removed because it will be made
                // again later. (This heuristic is not always a win.)
                // It is not necessary to compare scan[2] and match[2] since they
                // are always equal when the other bytes match, given that
                // the hash keys are equal and that HASH_BITS >= 8.
                scan += 2; match++;

                // We check for insufficient lookahead only every 8th comparison;
                // the 256th check will be made at strstart+258.
                do {
                } while (window[++scan] == window[++match] &&
                    window[++scan] == window[++match] &&
                    window[++scan] == window[++match] &&
                    window[++scan] == window[++match] &&
                    window[++scan] == window[++match] &&
                    window[++scan] == window[++match] &&
                    window[++scan] == window[++match] &&
                    window[++scan] == window[++match] &&
                    scan < strend);

                len = MAX_MATCH - (int)(strend - scan);
                scan = strend - MAX_MATCH;

                if(len>best_len) {
                    match_start = cur_match;
                    best_len = len;
                    if (len >= nice_match) break;
                    scan_end1  = window[scan+best_len-1];
                    scan_end   = window[scan+best_len];
                }

            } while ((cur_match = (prev[cur_match & wmask]&0xffff)) > limit
                && --chain_length != 0);

            if (best_len <= lookahead) return best_len;
            return lookahead;
        }
    
        internal int deflateInit(ZStream strm, int level, int bits){
            return deflateInit2(strm, level, Z_DEFLATED, bits, DEF_MEM_LEVEL,
                Z_DEFAULT_STRATEGY);
        }
        internal int deflateInit(ZStream strm, int level){
            return deflateInit(strm, level, MAX_WBITS);
        }
        internal int deflateInit2(ZStream strm, int level, int method,  int windowBits,
            int memLevel, int strategy){
            int noheader = 0;
            //    byte[] my_version=ZLIB_VERSION;

            //
            //  if (version == null || version[0] != my_version[0]
            //  || stream_size != sizeof(z_stream)) {
            //  return Z_VERSION_ERROR;
            //  }

            strm.msg = null;

            if (level == Z_DEFAULT_COMPRESSION) level = 6;

            if (windowBits < 0) { // undocumented feature: suppress zlib header
                noheader = 1;
                windowBits = -windowBits;
            }

            if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || 
                method != Z_DEFLATED ||
                windowBits < 9 || windowBits > 15 || level < 0 || level > 9 ||
                strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
                return Z_STREAM_ERROR;
            }

            strm.dstate = (Deflate)this;

            this.noheader = noheader;
            w_bits = windowBits;
            w_size = 1 << w_bits;
            w_mask = w_size - 1;

            hash_bits = memLevel + 7;
            hash_size = 1 << hash_bits;
            hash_mask = hash_size - 1;
            hash_shift = ((hash_bits+MIN_MATCH-1)/MIN_MATCH);

            window = new byte[w_size*2];
            prev = new short[w_size];
            head = new short[hash_size];

            lit_bufsize = 1 << (memLevel + 6); // 16K elements by default

            // We overlay pending_buf and d_buf+l_buf. This works since the average
            // output size for (length,distance) codes is <= 24 bits.
            pending_buf = new byte[lit_bufsize*4];
            pending_buf_size = lit_bufsize*4;

            d_buf = lit_bufsize/2;
            l_buf = (1+2)*lit_bufsize;

            this.level = level;

            //System.out.println("level="+level);

            this.strategy = strategy;
            this.method = (byte)method;

            return deflateReset(strm);
        }

        internal int deflateReset(ZStream strm){
            strm.total_in = strm.total_out = 0;
            strm.msg = null; //
            strm.data_type = Z_UNKNOWN;

            pending = 0;
            pending_out = 0;

            if(noheader < 0) {
                noheader = 0; // was set to -1 by deflate(..., Z_FINISH);
            }
            status = (noheader!=0) ? BUSY_STATE : INIT_STATE;
            strm.adler=strm._adler.adler32(0, null, 0, 0);

            last_flush = Z_NO_FLUSH;

            tr_init();
            lm_init();
            return Z_OK;
        }

        internal int deflateEnd(){
            if(status!=INIT_STATE && status!=BUSY_STATE && status!=FINISH_STATE){
                return Z_STREAM_ERROR;
            }
            // Deallocate in reverse order of allocations:
            pending_buf=null;
            head=null;
            prev=null;
            window=null;
            // free
            // dstate=null;
            return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
        }

        internal int deflateParams(ZStream strm, int _level, int _strategy){
            int err=Z_OK;

            if(_level == Z_DEFAULT_COMPRESSION){
                _level = 6;
            }
            if(_level < 0 || _level > 9 || 
                _strategy < 0 || _strategy > Z_HUFFMAN_ONLY) {
                return Z_STREAM_ERROR;
            }

            if(config_table[level].func!=config_table[_level].func &&
                strm.total_in != 0) {
                // Flush the last buffer:
                err = strm.deflate(Z_PARTIAL_FLUSH);
            }

            if(level != _level) {
                level = _level;
                max_lazy_match   = config_table[level].max_lazy;
                good_match       = config_table[level].good_length;
                nice_match       = config_table[level].nice_length;
                max_chain_length = config_table[level].max_chain;
            }
            strategy = _strategy;
            return err;
        }

        internal int deflateSetDictionary (ZStream strm, byte[] dictionary, int dictLength){
            int length = dictLength;
            int index=0;

            if(dictionary == null || status != INIT_STATE)
                return Z_STREAM_ERROR;

            strm.adler=strm._adler.adler32(strm.adler, dictionary, 0, dictLength);

            if(length < MIN_MATCH) return Z_OK;
            if(length > w_size-MIN_LOOKAHEAD){
                length = w_size-MIN_LOOKAHEAD;
                index=dictLength-length; // use the tail of the dictionary
            }
            System.Array.Copy(dictionary, index, window, 0, length);
            strstart = length;
            block_start = length;

            // Insert all strings in the hash table (except for the last two bytes).
            // s->lookahead stays null, so s->ins_h will be recomputed at the next
            // call of fill_window.

            ins_h = window[0]&0xff;
            ins_h=(((ins_h)<<hash_shift)^(window[1]&0xff))&hash_mask;

            for(int n=0; n<=length-MIN_MATCH; n++){
                ins_h=(((ins_h)<<hash_shift)^(window[(n)+(MIN_MATCH-1)]&0xff))&hash_mask;
                prev[n&w_mask]=head[ins_h];
                head[ins_h]=(short)n;
            }
            return Z_OK;
        }

        internal int deflate(ZStream strm, int flush){
            int old_flush;

            if(flush>Z_FINISH || flush<0){
                return Z_STREAM_ERROR;
            }

            if(strm.next_out == null ||
                (strm.next_in == null && strm.avail_in != 0) ||
                (status == FINISH_STATE && flush != Z_FINISH)) {
                strm.msg=z_errmsg[Z_NEED_DICT-(Z_STREAM_ERROR)];
                return Z_STREAM_ERROR;
            }
            if(strm.avail_out == 0){
                strm.msg=z_errmsg[Z_NEED_DICT-(Z_BUF_ERROR)];
                return Z_BUF_ERROR;
            }

            this.strm = strm; // just in case
            old_flush = last_flush;
            last_flush = flush;

            // Write the zlib header
            if(status == INIT_STATE) {
                int header = (Z_DEFLATED+((w_bits-8)<<4))<<8;
                int level_flags=((level-1)&0xff)>>1;

                if(level_flags>3) level_flags=3;
                header |= (level_flags<<6);
                if(strstart!=0) header |= PRESET_DICT;
                header+=31-(header % 31);

                status=BUSY_STATE;
                putShortMSB(header);


                // Save the adler32 of the preset dictionary:
                if(strstart!=0){
                    putShortMSB((int)(strm.adler>>16));
                    putShortMSB((int)(strm.adler&0xffff));
                }
                strm.adler=strm._adler.adler32(0, null, 0, 0);
            }

            // Flush as much pending output as possible
            if(pending != 0) {
                strm.flush_pending();
                if(strm.avail_out == 0) {
                    //System.out.println("  avail_out==0");
                    // Since avail_out is 0, deflate will be called again with
                    // more output space, but possibly with both pending and
                    // avail_in equal to zero. There won't be anything to do,
                    // but this is not an error situation so make sure we
                    // return OK instead of BUF_ERROR at next call of deflate:
                    last_flush = -1;
                    return Z_OK;
                }

                // Make sure there is something to do and avoid duplicate consecutive
                // flushes. For repeated and useless calls with Z_FINISH, we keep
                // returning Z_STREAM_END instead of Z_BUFF_ERROR.
            }
            else if(strm.avail_in==0 && flush <= old_flush &&
                flush != Z_FINISH) {
                strm.msg=z_errmsg[Z_NEED_DICT-(Z_BUF_ERROR)];
                return Z_BUF_ERROR;
            }

            // User must not provide more input after the first FINISH:
            if(status == FINISH_STATE && strm.avail_in != 0) {
                strm.msg=z_errmsg[Z_NEED_DICT-(Z_BUF_ERROR)];
                return Z_BUF_ERROR;
            }

            // Start a new block or continue the current one.
            if(strm.avail_in!=0 || lookahead!=0 ||
                (flush != Z_NO_FLUSH && status != FINISH_STATE)) {
                int bstate=-1;
                switch(config_table[level].func){
                    case STORED: 
                        bstate = deflate_stored(flush);
                        break;
                    case FAST: 
                        bstate = deflate_fast(flush);
                        break;
                    case SLOW: 
                        bstate = deflate_slow(flush);
                        break;
                    default:
                        break;
                }

                if (bstate==FinishStarted || bstate==FinishDone) {
                    status = FINISH_STATE;
                }
                if (bstate==NeedMore || bstate==FinishStarted) {
                    if(strm.avail_out == 0) {
                        last_flush = -1; // avoid BUF_ERROR next call, see above
                    }
                    return Z_OK;
                    // If flush != Z_NO_FLUSH && avail_out == 0, the next call
                    // of deflate should use the same flush parameter to make sure
                    // that the flush is complete. So we don't have to output an
                    // empty block here, this will be done at next call. This also
                    // ensures that for a very small output buffer, we emit at most
                    // one empty block.
                }

                if (bstate==BlockDone) {
                    if(flush == Z_PARTIAL_FLUSH) {
                        _tr_align();
                    } 
                    else { // FULL_FLUSH or SYNC_FLUSH
                        _tr_stored_block(0, 0, false);
                        // For a full flush, this empty block will be recognized
                        // as a special marker by inflate_sync().
                        if(flush == Z_FULL_FLUSH) {
                            //state.head[s.hash_size-1]=0;
                            for(int i=0; i<hash_size/*-1*/; i++)  // forget history
                                head[i]=0;
                        }
                    }
                    strm.flush_pending();
                    if(strm.avail_out == 0) {
                        last_flush = -1; // avoid BUF_ERROR at next call, see above
                        return Z_OK;
                    }
                }
            }

            if(flush!=Z_FINISH) return Z_OK;
            if(noheader!=0) return Z_STREAM_END;

            // Write the zlib trailer (adler32)
            putShortMSB((int)(strm.adler>>16));
            putShortMSB((int)(strm.adler&0xffff));
            strm.flush_pending();

            // If avail_out is zero, the application will call deflate again
            // to flush the rest.
            noheader = -1; // write the trailer only once!
            return pending != 0 ? Z_OK : Z_STREAM_END;
        }
    }
}