Tnaf.cs
29 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
using System;
namespace Org.BouncyCastle.Math.EC.Abc
{
/**
* Class holding methods for point multiplication based on the window
* τ-adic nonadjacent form (WTNAF). The algorithms are based on the
* paper "Improved Algorithms for Arithmetic on Anomalous Binary Curves"
* by Jerome A. Solinas. The paper first appeared in the Proceedings of
* Crypto 1997.
*/
internal class Tnaf
{
private static readonly BigInteger MinusOne = BigInteger.One.Negate();
private static readonly BigInteger MinusTwo = BigInteger.Two.Negate();
private static readonly BigInteger MinusThree = BigInteger.Three.Negate();
private static readonly BigInteger Four = BigInteger.ValueOf(4);
/**
* The window width of WTNAF. The standard value of 4 is slightly less
* than optimal for running time, but keeps space requirements for
* precomputation low. For typical curves, a value of 5 or 6 results in
* a better running time. When changing this value, the
* <code>α<sub>u</sub></code>'s must be computed differently, see
* e.g. "Guide to Elliptic Curve Cryptography", Darrel Hankerson,
* Alfred Menezes, Scott Vanstone, Springer-Verlag New York Inc., 2004,
* p. 121-122
*/
public const sbyte Width = 4;
/**
* 2<sup>4</sup>
*/
public const sbyte Pow2Width = 16;
/**
* The <code>α<sub>u</sub></code>'s for <code>a=0</code> as an array
* of <code>ZTauElement</code>s.
*/
public static readonly ZTauElement[] Alpha0 =
{
null,
new ZTauElement(BigInteger.One, BigInteger.Zero), null,
new ZTauElement(MinusThree, MinusOne), null,
new ZTauElement(MinusOne, MinusOne), null,
new ZTauElement(BigInteger.One, MinusOne), null
};
/**
* The <code>α<sub>u</sub></code>'s for <code>a=0</code> as an array
* of TNAFs.
*/
public static readonly sbyte[][] Alpha0Tnaf =
{
null, new sbyte[]{1}, null, new sbyte[]{-1, 0, 1}, null, new sbyte[]{1, 0, 1}, null, new sbyte[]{-1, 0, 0, 1}
};
/**
* The <code>α<sub>u</sub></code>'s for <code>a=1</code> as an array
* of <code>ZTauElement</code>s.
*/
public static readonly ZTauElement[] Alpha1 =
{
null,
new ZTauElement(BigInteger.One, BigInteger.Zero), null,
new ZTauElement(MinusThree, BigInteger.One), null,
new ZTauElement(MinusOne, BigInteger.One), null,
new ZTauElement(BigInteger.One, BigInteger.One), null
};
/**
* The <code>α<sub>u</sub></code>'s for <code>a=1</code> as an array
* of TNAFs.
*/
public static readonly sbyte[][] Alpha1Tnaf =
{
null, new sbyte[]{1}, null, new sbyte[]{-1, 0, 1}, null, new sbyte[]{1, 0, 1}, null, new sbyte[]{-1, 0, 0, -1}
};
/**
* Computes the norm of an element <code>λ</code> of
* <code><b>Z</b>[τ]</code>.
* @param mu The parameter <code>μ</code> of the elliptic curve.
* @param lambda The element <code>λ</code> of
* <code><b>Z</b>[τ]</code>.
* @return The norm of <code>λ</code>.
*/
public static BigInteger Norm(sbyte mu, ZTauElement lambda)
{
BigInteger norm;
// s1 = u^2
BigInteger s1 = lambda.u.Multiply(lambda.u);
// s2 = u * v
BigInteger s2 = lambda.u.Multiply(lambda.v);
// s3 = 2 * v^2
BigInteger s3 = lambda.v.Multiply(lambda.v).ShiftLeft(1);
if (mu == 1)
{
norm = s1.Add(s2).Add(s3);
}
else if (mu == -1)
{
norm = s1.Subtract(s2).Add(s3);
}
else
{
throw new ArgumentException("mu must be 1 or -1");
}
return norm;
}
/**
* Computes the norm of an element <code>λ</code> of
* <code><b>R</b>[τ]</code>, where <code>λ = u + vτ</code>
* and <code>u</code> and <code>u</code> are real numbers (elements of
* <code><b>R</b></code>).
* @param mu The parameter <code>μ</code> of the elliptic curve.
* @param u The real part of the element <code>λ</code> of
* <code><b>R</b>[τ]</code>.
* @param v The <code>τ</code>-adic part of the element
* <code>λ</code> of <code><b>R</b>[τ]</code>.
* @return The norm of <code>λ</code>.
*/
public static SimpleBigDecimal Norm(sbyte mu, SimpleBigDecimal u, SimpleBigDecimal v)
{
SimpleBigDecimal norm;
// s1 = u^2
SimpleBigDecimal s1 = u.Multiply(u);
// s2 = u * v
SimpleBigDecimal s2 = u.Multiply(v);
// s3 = 2 * v^2
SimpleBigDecimal s3 = v.Multiply(v).ShiftLeft(1);
if (mu == 1)
{
norm = s1.Add(s2).Add(s3);
}
else if (mu == -1)
{
norm = s1.Subtract(s2).Add(s3);
}
else
{
throw new ArgumentException("mu must be 1 or -1");
}
return norm;
}
/**
* Rounds an element <code>λ</code> of <code><b>R</b>[τ]</code>
* to an element of <code><b>Z</b>[τ]</code>, such that their difference
* has minimal norm. <code>λ</code> is given as
* <code>λ = λ<sub>0</sub> + λ<sub>1</sub>τ</code>.
* @param lambda0 The component <code>λ<sub>0</sub></code>.
* @param lambda1 The component <code>λ<sub>1</sub></code>.
* @param mu The parameter <code>μ</code> of the elliptic curve. Must
* equal 1 or -1.
* @return The rounded element of <code><b>Z</b>[τ]</code>.
* @throws ArgumentException if <code>lambda0</code> and
* <code>lambda1</code> do not have same scale.
*/
public static ZTauElement Round(SimpleBigDecimal lambda0,
SimpleBigDecimal lambda1, sbyte mu)
{
int scale = lambda0.Scale;
if (lambda1.Scale != scale)
throw new ArgumentException("lambda0 and lambda1 do not have same scale");
if (!((mu == 1) || (mu == -1)))
throw new ArgumentException("mu must be 1 or -1");
BigInteger f0 = lambda0.Round();
BigInteger f1 = lambda1.Round();
SimpleBigDecimal eta0 = lambda0.Subtract(f0);
SimpleBigDecimal eta1 = lambda1.Subtract(f1);
// eta = 2*eta0 + mu*eta1
SimpleBigDecimal eta = eta0.Add(eta0);
if (mu == 1)
{
eta = eta.Add(eta1);
}
else
{
// mu == -1
eta = eta.Subtract(eta1);
}
// check1 = eta0 - 3*mu*eta1
// check2 = eta0 + 4*mu*eta1
SimpleBigDecimal threeEta1 = eta1.Add(eta1).Add(eta1);
SimpleBigDecimal fourEta1 = threeEta1.Add(eta1);
SimpleBigDecimal check1;
SimpleBigDecimal check2;
if (mu == 1)
{
check1 = eta0.Subtract(threeEta1);
check2 = eta0.Add(fourEta1);
}
else
{
// mu == -1
check1 = eta0.Add(threeEta1);
check2 = eta0.Subtract(fourEta1);
}
sbyte h0 = 0;
sbyte h1 = 0;
// if eta >= 1
if (eta.CompareTo(BigInteger.One) >= 0)
{
if (check1.CompareTo(MinusOne) < 0)
{
h1 = mu;
}
else
{
h0 = 1;
}
}
else
{
// eta < 1
if (check2.CompareTo(BigInteger.Two) >= 0)
{
h1 = mu;
}
}
// if eta < -1
if (eta.CompareTo(MinusOne) < 0)
{
if (check1.CompareTo(BigInteger.One) >= 0)
{
h1 = (sbyte)-mu;
}
else
{
h0 = -1;
}
}
else
{
// eta >= -1
if (check2.CompareTo(MinusTwo) < 0)
{
h1 = (sbyte)-mu;
}
}
BigInteger q0 = f0.Add(BigInteger.ValueOf(h0));
BigInteger q1 = f1.Add(BigInteger.ValueOf(h1));
return new ZTauElement(q0, q1);
}
/**
* Approximate division by <code>n</code>. For an integer
* <code>k</code>, the value <code>λ = s k / n</code> is
* computed to <code>c</code> bits of accuracy.
* @param k The parameter <code>k</code>.
* @param s The curve parameter <code>s<sub>0</sub></code> or
* <code>s<sub>1</sub></code>.
* @param vm The Lucas Sequence element <code>V<sub>m</sub></code>.
* @param a The parameter <code>a</code> of the elliptic curve.
* @param m The bit length of the finite field
* <code><b>F</b><sub>m</sub></code>.
* @param c The number of bits of accuracy, i.e. the scale of the returned
* <code>SimpleBigDecimal</code>.
* @return The value <code>λ = s k / n</code> computed to
* <code>c</code> bits of accuracy.
*/
public static SimpleBigDecimal ApproximateDivisionByN(BigInteger k,
BigInteger s, BigInteger vm, sbyte a, int m, int c)
{
int _k = (m + 5)/2 + c;
BigInteger ns = k.ShiftRight(m - _k - 2 + a);
BigInteger gs = s.Multiply(ns);
BigInteger hs = gs.ShiftRight(m);
BigInteger js = vm.Multiply(hs);
BigInteger gsPlusJs = gs.Add(js);
BigInteger ls = gsPlusJs.ShiftRight(_k-c);
if (gsPlusJs.TestBit(_k-c-1))
{
// round up
ls = ls.Add(BigInteger.One);
}
return new SimpleBigDecimal(ls, c);
}
/**
* Computes the <code>τ</code>-adic NAF (non-adjacent form) of an
* element <code>λ</code> of <code><b>Z</b>[τ]</code>.
* @param mu The parameter <code>μ</code> of the elliptic curve.
* @param lambda The element <code>λ</code> of
* <code><b>Z</b>[τ]</code>.
* @return The <code>τ</code>-adic NAF of <code>λ</code>.
*/
public static sbyte[] TauAdicNaf(sbyte mu, ZTauElement lambda)
{
if (!((mu == 1) || (mu == -1)))
throw new ArgumentException("mu must be 1 or -1");
BigInteger norm = Norm(mu, lambda);
// Ceiling of log2 of the norm
int log2Norm = norm.BitLength;
// If length(TNAF) > 30, then length(TNAF) < log2Norm + 3.52
int maxLength = log2Norm > 30 ? log2Norm + 4 : 34;
// The array holding the TNAF
sbyte[] u = new sbyte[maxLength];
int i = 0;
// The actual length of the TNAF
int length = 0;
BigInteger r0 = lambda.u;
BigInteger r1 = lambda.v;
while(!((r0.Equals(BigInteger.Zero)) && (r1.Equals(BigInteger.Zero))))
{
// If r0 is odd
if (r0.TestBit(0))
{
u[i] = (sbyte) BigInteger.Two.Subtract((r0.Subtract(r1.ShiftLeft(1))).Mod(Four)).IntValue;
// r0 = r0 - u[i]
if (u[i] == 1)
{
r0 = r0.ClearBit(0);
}
else
{
// u[i] == -1
r0 = r0.Add(BigInteger.One);
}
length = i;
}
else
{
u[i] = 0;
}
BigInteger t = r0;
BigInteger s = r0.ShiftRight(1);
if (mu == 1)
{
r0 = r1.Add(s);
}
else
{
// mu == -1
r0 = r1.Subtract(s);
}
r1 = t.ShiftRight(1).Negate();
i++;
}
length++;
// Reduce the TNAF array to its actual length
sbyte[] tnaf = new sbyte[length];
Array.Copy(u, 0, tnaf, 0, length);
return tnaf;
}
/**
* Applies the operation <code>τ()</code> to an
* <code>AbstractF2mPoint</code>.
* @param p The AbstractF2mPoint to which <code>τ()</code> is applied.
* @return <code>τ(p)</code>
*/
public static AbstractF2mPoint Tau(AbstractF2mPoint p)
{
return p.Tau();
}
/**
* Returns the parameter <code>μ</code> of the elliptic curve.
* @param curve The elliptic curve from which to obtain <code>μ</code>.
* The curve must be a Koblitz curve, i.e. <code>a</code> Equals
* <code>0</code> or <code>1</code> and <code>b</code> Equals
* <code>1</code>.
* @return <code>μ</code> of the elliptic curve.
* @throws ArgumentException if the given ECCurve is not a Koblitz
* curve.
*/
public static sbyte GetMu(AbstractF2mCurve curve)
{
BigInteger a = curve.A.ToBigInteger();
sbyte mu;
if (a.SignValue == 0)
{
mu = -1;
}
else if (a.Equals(BigInteger.One))
{
mu = 1;
}
else
{
throw new ArgumentException("No Koblitz curve (ABC), TNAF multiplication not possible");
}
return mu;
}
public static sbyte GetMu(ECFieldElement curveA)
{
return (sbyte)(curveA.IsZero ? -1 : 1);
}
public static sbyte GetMu(int curveA)
{
return (sbyte)(curveA == 0 ? -1 : 1);
}
/**
* Calculates the Lucas Sequence elements <code>U<sub>k-1</sub></code> and
* <code>U<sub>k</sub></code> or <code>V<sub>k-1</sub></code> and
* <code>V<sub>k</sub></code>.
* @param mu The parameter <code>μ</code> of the elliptic curve.
* @param k The index of the second element of the Lucas Sequence to be
* returned.
* @param doV If set to true, computes <code>V<sub>k-1</sub></code> and
* <code>V<sub>k</sub></code>, otherwise <code>U<sub>k-1</sub></code> and
* <code>U<sub>k</sub></code>.
* @return An array with 2 elements, containing <code>U<sub>k-1</sub></code>
* and <code>U<sub>k</sub></code> or <code>V<sub>k-1</sub></code>
* and <code>V<sub>k</sub></code>.
*/
public static BigInteger[] GetLucas(sbyte mu, int k, bool doV)
{
if (!(mu == 1 || mu == -1))
throw new ArgumentException("mu must be 1 or -1");
BigInteger u0;
BigInteger u1;
BigInteger u2;
if (doV)
{
u0 = BigInteger.Two;
u1 = BigInteger.ValueOf(mu);
}
else
{
u0 = BigInteger.Zero;
u1 = BigInteger.One;
}
for (int i = 1; i < k; i++)
{
// u2 = mu*u1 - 2*u0;
BigInteger s = null;
if (mu == 1)
{
s = u1;
}
else
{
// mu == -1
s = u1.Negate();
}
u2 = s.Subtract(u0.ShiftLeft(1));
u0 = u1;
u1 = u2;
// System.out.println(i + ": " + u2);
// System.out.println();
}
BigInteger[] retVal = {u0, u1};
return retVal;
}
/**
* Computes the auxiliary value <code>t<sub>w</sub></code>. If the width is
* 4, then for <code>mu = 1</code>, <code>t<sub>w</sub> = 6</code> and for
* <code>mu = -1</code>, <code>t<sub>w</sub> = 10</code>
* @param mu The parameter <code>μ</code> of the elliptic curve.
* @param w The window width of the WTNAF.
* @return the auxiliary value <code>t<sub>w</sub></code>
*/
public static BigInteger GetTw(sbyte mu, int w)
{
if (w == 4)
{
if (mu == 1)
{
return BigInteger.ValueOf(6);
}
else
{
// mu == -1
return BigInteger.ValueOf(10);
}
}
else
{
// For w <> 4, the values must be computed
BigInteger[] us = GetLucas(mu, w, false);
BigInteger twoToW = BigInteger.Zero.SetBit(w);
BigInteger u1invert = us[1].ModInverse(twoToW);
BigInteger tw;
tw = BigInteger.Two.Multiply(us[0]).Multiply(u1invert).Mod(twoToW);
//System.out.println("mu = " + mu);
//System.out.println("tw = " + tw);
return tw;
}
}
/**
* Computes the auxiliary values <code>s<sub>0</sub></code> and
* <code>s<sub>1</sub></code> used for partial modular reduction.
* @param curve The elliptic curve for which to compute
* <code>s<sub>0</sub></code> and <code>s<sub>1</sub></code>.
* @throws ArgumentException if <code>curve</code> is not a
* Koblitz curve (Anomalous Binary Curve, ABC).
*/
public static BigInteger[] GetSi(AbstractF2mCurve curve)
{
if (!curve.IsKoblitz)
throw new ArgumentException("si is defined for Koblitz curves only");
int m = curve.FieldSize;
int a = curve.A.ToBigInteger().IntValue;
sbyte mu = GetMu(a);
int shifts = GetShiftsForCofactor(curve.Cofactor);
int index = m + 3 - a;
BigInteger[] ui = GetLucas(mu, index, false);
if (mu == 1)
{
ui[0] = ui[0].Negate();
ui[1] = ui[1].Negate();
}
BigInteger dividend0 = BigInteger.One.Add(ui[1]).ShiftRight(shifts);
BigInteger dividend1 = BigInteger.One.Add(ui[0]).ShiftRight(shifts).Negate();
return new BigInteger[] { dividend0, dividend1 };
}
public static BigInteger[] GetSi(int fieldSize, int curveA, BigInteger cofactor)
{
sbyte mu = GetMu(curveA);
int shifts = GetShiftsForCofactor(cofactor);
int index = fieldSize + 3 - curveA;
BigInteger[] ui = GetLucas(mu, index, false);
if (mu == 1)
{
ui[0] = ui[0].Negate();
ui[1] = ui[1].Negate();
}
BigInteger dividend0 = BigInteger.One.Add(ui[1]).ShiftRight(shifts);
BigInteger dividend1 = BigInteger.One.Add(ui[0]).ShiftRight(shifts).Negate();
return new BigInteger[] { dividend0, dividend1 };
}
protected static int GetShiftsForCofactor(BigInteger h)
{
if (h != null && h.BitLength < 4)
{
int hi = h.IntValue;
if (hi == 2)
return 1;
if (hi == 4)
return 2;
}
throw new ArgumentException("h (Cofactor) must be 2 or 4");
}
/**
* Partial modular reduction modulo
* <code>(τ<sup>m</sup> - 1)/(τ - 1)</code>.
* @param k The integer to be reduced.
* @param m The bitlength of the underlying finite field.
* @param a The parameter <code>a</code> of the elliptic curve.
* @param s The auxiliary values <code>s<sub>0</sub></code> and
* <code>s<sub>1</sub></code>.
* @param mu The parameter μ of the elliptic curve.
* @param c The precision (number of bits of accuracy) of the partial
* modular reduction.
* @return <code>ρ := k partmod (τ<sup>m</sup> - 1)/(τ - 1)</code>
*/
public static ZTauElement PartModReduction(BigInteger k, int m, sbyte a,
BigInteger[] s, sbyte mu, sbyte c)
{
// d0 = s[0] + mu*s[1]; mu is either 1 or -1
BigInteger d0;
if (mu == 1)
{
d0 = s[0].Add(s[1]);
}
else
{
d0 = s[0].Subtract(s[1]);
}
BigInteger[] v = GetLucas(mu, m, true);
BigInteger vm = v[1];
SimpleBigDecimal lambda0 = ApproximateDivisionByN(
k, s[0], vm, a, m, c);
SimpleBigDecimal lambda1 = ApproximateDivisionByN(
k, s[1], vm, a, m, c);
ZTauElement q = Round(lambda0, lambda1, mu);
// r0 = n - d0*q0 - 2*s1*q1
BigInteger r0 = k.Subtract(d0.Multiply(q.u)).Subtract(
BigInteger.ValueOf(2).Multiply(s[1]).Multiply(q.v));
// r1 = s1*q0 - s0*q1
BigInteger r1 = s[1].Multiply(q.u).Subtract(s[0].Multiply(q.v));
return new ZTauElement(r0, r1);
}
/**
* Multiplies a {@link org.bouncycastle.math.ec.AbstractF2mPoint AbstractF2mPoint}
* by a <code>BigInteger</code> using the reduced <code>τ</code>-adic
* NAF (RTNAF) method.
* @param p The AbstractF2mPoint to Multiply.
* @param k The <code>BigInteger</code> by which to Multiply <code>p</code>.
* @return <code>k * p</code>
*/
public static AbstractF2mPoint MultiplyRTnaf(AbstractF2mPoint p, BigInteger k)
{
AbstractF2mCurve curve = (AbstractF2mCurve)p.Curve;
int m = curve.FieldSize;
int a = curve.A.ToBigInteger().IntValue;
sbyte mu = GetMu(a);
BigInteger[] s = curve.GetSi();
ZTauElement rho = PartModReduction(k, m, (sbyte)a, s, mu, (sbyte)10);
return MultiplyTnaf(p, rho);
}
/**
* Multiplies a {@link org.bouncycastle.math.ec.AbstractF2mPoint AbstractF2mPoint}
* by an element <code>λ</code> of <code><b>Z</b>[τ]</code>
* using the <code>τ</code>-adic NAF (TNAF) method.
* @param p The AbstractF2mPoint to Multiply.
* @param lambda The element <code>λ</code> of
* <code><b>Z</b>[τ]</code>.
* @return <code>λ * p</code>
*/
public static AbstractF2mPoint MultiplyTnaf(AbstractF2mPoint p, ZTauElement lambda)
{
AbstractF2mCurve curve = (AbstractF2mCurve)p.Curve;
sbyte mu = GetMu(curve.A);
sbyte[] u = TauAdicNaf(mu, lambda);
AbstractF2mPoint q = MultiplyFromTnaf(p, u);
return q;
}
/**
* Multiplies a {@link org.bouncycastle.math.ec.AbstractF2mPoint AbstractF2mPoint}
* by an element <code>λ</code> of <code><b>Z</b>[τ]</code>
* using the <code>τ</code>-adic NAF (TNAF) method, given the TNAF
* of <code>λ</code>.
* @param p The AbstractF2mPoint to Multiply.
* @param u The the TNAF of <code>λ</code>..
* @return <code>λ * p</code>
*/
public static AbstractF2mPoint MultiplyFromTnaf(AbstractF2mPoint p, sbyte[] u)
{
ECCurve curve = p.Curve;
AbstractF2mPoint q = (AbstractF2mPoint)curve.Infinity;
AbstractF2mPoint pNeg = (AbstractF2mPoint)p.Negate();
int tauCount = 0;
for (int i = u.Length - 1; i >= 0; i--)
{
++tauCount;
sbyte ui = u[i];
if (ui != 0)
{
q = q.TauPow(tauCount);
tauCount = 0;
ECPoint x = ui > 0 ? p : pNeg;
q = (AbstractF2mPoint)q.Add(x);
}
}
if (tauCount > 0)
{
q = q.TauPow(tauCount);
}
return q;
}
/**
* Computes the <code>[τ]</code>-adic window NAF of an element
* <code>λ</code> of <code><b>Z</b>[τ]</code>.
* @param mu The parameter μ of the elliptic curve.
* @param lambda The element <code>λ</code> of
* <code><b>Z</b>[τ]</code> of which to compute the
* <code>[τ]</code>-adic NAF.
* @param width The window width of the resulting WNAF.
* @param pow2w 2<sup>width</sup>.
* @param tw The auxiliary value <code>t<sub>w</sub></code>.
* @param alpha The <code>α<sub>u</sub></code>'s for the window width.
* @return The <code>[τ]</code>-adic window NAF of
* <code>λ</code>.
*/
public static sbyte[] TauAdicWNaf(sbyte mu, ZTauElement lambda,
sbyte width, BigInteger pow2w, BigInteger tw, ZTauElement[] alpha)
{
if (!((mu == 1) || (mu == -1)))
throw new ArgumentException("mu must be 1 or -1");
BigInteger norm = Norm(mu, lambda);
// Ceiling of log2 of the norm
int log2Norm = norm.BitLength;
// If length(TNAF) > 30, then length(TNAF) < log2Norm + 3.52
int maxLength = log2Norm > 30 ? log2Norm + 4 + width : 34 + width;
// The array holding the TNAF
sbyte[] u = new sbyte[maxLength];
// 2^(width - 1)
BigInteger pow2wMin1 = pow2w.ShiftRight(1);
// Split lambda into two BigIntegers to simplify calculations
BigInteger r0 = lambda.u;
BigInteger r1 = lambda.v;
int i = 0;
// while lambda <> (0, 0)
while (!((r0.Equals(BigInteger.Zero))&&(r1.Equals(BigInteger.Zero))))
{
// if r0 is odd
if (r0.TestBit(0))
{
// uUnMod = r0 + r1*tw Mod 2^width
BigInteger uUnMod
= r0.Add(r1.Multiply(tw)).Mod(pow2w);
sbyte uLocal;
// if uUnMod >= 2^(width - 1)
if (uUnMod.CompareTo(pow2wMin1) >= 0)
{
uLocal = (sbyte) uUnMod.Subtract(pow2w).IntValue;
}
else
{
uLocal = (sbyte) uUnMod.IntValue;
}
// uLocal is now in [-2^(width-1), 2^(width-1)-1]
u[i] = uLocal;
bool s = true;
if (uLocal < 0)
{
s = false;
uLocal = (sbyte)-uLocal;
}
// uLocal is now >= 0
if (s)
{
r0 = r0.Subtract(alpha[uLocal].u);
r1 = r1.Subtract(alpha[uLocal].v);
}
else
{
r0 = r0.Add(alpha[uLocal].u);
r1 = r1.Add(alpha[uLocal].v);
}
}
else
{
u[i] = 0;
}
BigInteger t = r0;
if (mu == 1)
{
r0 = r1.Add(r0.ShiftRight(1));
}
else
{
// mu == -1
r0 = r1.Subtract(r0.ShiftRight(1));
}
r1 = t.ShiftRight(1).Negate();
i++;
}
return u;
}
/**
* Does the precomputation for WTNAF multiplication.
* @param p The <code>ECPoint</code> for which to do the precomputation.
* @param a The parameter <code>a</code> of the elliptic curve.
* @return The precomputation array for <code>p</code>.
*/
public static AbstractF2mPoint[] GetPreComp(AbstractF2mPoint p, sbyte a)
{
sbyte[][] alphaTnaf = (a == 0) ? Tnaf.Alpha0Tnaf : Tnaf.Alpha1Tnaf;
AbstractF2mPoint[] pu = new AbstractF2mPoint[(uint)(alphaTnaf.Length + 1) >> 1];
pu[0] = p;
uint precompLen = (uint)alphaTnaf.Length;
for (uint i = 3; i < precompLen; i += 2)
{
pu[i >> 1] = Tnaf.MultiplyFromTnaf(p, alphaTnaf[i]);
}
p.Curve.NormalizeAll(pu);
return pu;
}
}
}