Primes.cs 20.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
using System;

using Org.BouncyCastle.Crypto;
using Org.BouncyCastle.Security;
using Org.BouncyCastle.Utilities;

namespace Org.BouncyCastle.Math
{
    /**
     * Utility methods for generating primes and testing for primality.
     */
    public abstract class Primes
    {
        public static readonly int SmallFactorLimit = 211;

        private static readonly BigInteger One = BigInteger.One;
        private static readonly BigInteger Two = BigInteger.Two;
        private static readonly BigInteger Three = BigInteger.Three;

        /**
         * Used to return the output from the
         * {@linkplain Primes#enhancedMRProbablePrimeTest(BigInteger, SecureRandom, int) Enhanced
         * Miller-Rabin Probabilistic Primality Test}
         */
        public class MROutput
        {
            internal static MROutput ProbablyPrime()
            {
                return new MROutput(false, null);
            }

            internal static MROutput ProvablyCompositeWithFactor(BigInteger factor)
            {
                return new MROutput(true, factor);
            }

            internal static MROutput ProvablyCompositeNotPrimePower()
            {
                return new MROutput(true, null);
            }

            private readonly bool mProvablyComposite;
            private readonly BigInteger mFactor;

            private MROutput(bool provablyComposite, BigInteger factor)
            {
                this.mProvablyComposite = provablyComposite;
                this.mFactor = factor;
            }

            public BigInteger Factor
            {
                get { return mFactor; }
            }

            public bool IsProvablyComposite
            {
                get { return mProvablyComposite; }
            }

            public bool IsNotPrimePower
            {
                get { return mProvablyComposite && mFactor == null; }
            }
        }

        /**
         * Used to return the output from the {@linkplain Primes#generateSTRandomPrime(Digest, int, byte[]) Shawe-Taylor Random_Prime Routine} 
         */
        public class STOutput
        {
            private readonly BigInteger mPrime;
            private readonly byte[] mPrimeSeed;
            private readonly int mPrimeGenCounter;

            internal STOutput(BigInteger prime, byte[] primeSeed, int primeGenCounter)
            {
                this.mPrime = prime;
                this.mPrimeSeed = primeSeed;
                this.mPrimeGenCounter = primeGenCounter;
            }

            public BigInteger Prime
            {
                get { return mPrime; }
            }

            public byte[] PrimeSeed
            {
                get { return mPrimeSeed; }
            }

            public int PrimeGenCounter
            {
                get { return mPrimeGenCounter; }
            }
        }

        /**
         * FIPS 186-4 C.6 Shawe-Taylor Random_Prime Routine
         * 
         * Construct a provable prime number using a hash function.
         * 
         * @param hash
         *            the {@link Digest} instance to use (as "Hash()"). Cannot be null.
         * @param length
         *            the length (in bits) of the prime to be generated. Must be at least 2.
         * @param inputSeed
         *            the seed to be used for the generation of the requested prime. Cannot be null or
         *            empty.
         * @return an {@link STOutput} instance containing the requested prime.
         */
        public static STOutput GenerateSTRandomPrime(IDigest hash, int length, byte[] inputSeed)
        {
            if (hash == null)
                throw new ArgumentNullException("hash");
            if (length < 2)
                throw new ArgumentException("must be >= 2", "length");
            if (inputSeed == null)
                throw new ArgumentNullException("inputSeed");
            if (inputSeed.Length == 0)
                throw new ArgumentException("cannot be empty", "inputSeed");

            return ImplSTRandomPrime(hash, length, Arrays.Clone(inputSeed));
        }

        /**
         * FIPS 186-4 C.3.2 Enhanced Miller-Rabin Probabilistic Primality Test
         * 
         * Run several iterations of the Miller-Rabin algorithm with randomly-chosen bases. This is an
         * alternative to {@link #isMRProbablePrime(BigInteger, SecureRandom, int)} that provides more
         * information about a composite candidate, which may be useful when generating or validating
         * RSA moduli.
         * 
         * @param candidate
         *            the {@link BigInteger} instance to test for primality.
         * @param random
         *            the source of randomness to use to choose bases.
         * @param iterations
         *            the number of randomly-chosen bases to perform the test for.
         * @return an {@link MROutput} instance that can be further queried for details.
         */
        public static MROutput EnhancedMRProbablePrimeTest(BigInteger candidate, SecureRandom random, int iterations)
        {
            CheckCandidate(candidate, "candidate");

            if (random == null)
                throw new ArgumentNullException("random");
            if (iterations < 1)
                throw new ArgumentException("must be > 0", "iterations");

            if (candidate.BitLength == 2)
                return MROutput.ProbablyPrime();

            if (!candidate.TestBit(0))
                return MROutput.ProvablyCompositeWithFactor(Two);

            BigInteger w = candidate;
            BigInteger wSubOne = candidate.Subtract(One);
            BigInteger wSubTwo = candidate.Subtract(Two);

            int a = wSubOne.GetLowestSetBit();
            BigInteger m = wSubOne.ShiftRight(a);

            for (int i = 0; i < iterations; ++i)
            {
                BigInteger b = BigIntegers.CreateRandomInRange(Two, wSubTwo, random);
                BigInteger g = b.Gcd(w);

                if (g.CompareTo(One) > 0)
                    return MROutput.ProvablyCompositeWithFactor(g);

                BigInteger z = b.ModPow(m, w);

                if (z.Equals(One) || z.Equals(wSubOne))
                    continue;

                bool primeToBase = false;

                BigInteger x = z;
                for (int j = 1; j < a; ++j)
                {
                    z = z.ModPow(Two, w);

                    if (z.Equals(wSubOne))
                    {
                        primeToBase = true;
                        break;
                    }

                    if (z.Equals(One))
                        break;

                    x = z;
                }

                if (!primeToBase)
                {
                    if (!z.Equals(One))
                    {
                        x = z;
                        z = z.ModPow(Two, w);

                        if (!z.Equals(One))
                        {
                            x = z;
                        }
                    }

                    g = x.Subtract(One).Gcd(w);

                    if (g.CompareTo(One) > 0)
                        return MROutput.ProvablyCompositeWithFactor(g);

                    return MROutput.ProvablyCompositeNotPrimePower();
                }
            }

            return MROutput.ProbablyPrime();
        }

        /**
         * A fast check for small divisors, up to some implementation-specific limit.
         * 
         * @param candidate
         *            the {@link BigInteger} instance to test for division by small factors.
         * 
         * @return <code>true</code> if the candidate is found to have any small factors,
         *         <code>false</code> otherwise.
         */
        public static bool HasAnySmallFactors(BigInteger candidate)
        {
            CheckCandidate(candidate, "candidate");

            return ImplHasAnySmallFactors(candidate);
        }

        /**
         * FIPS 186-4 C.3.1 Miller-Rabin Probabilistic Primality Test
         * 
         * Run several iterations of the Miller-Rabin algorithm with randomly-chosen bases.
         * 
         * @param candidate
         *            the {@link BigInteger} instance to test for primality.
         * @param random
         *            the source of randomness to use to choose bases.
         * @param iterations
         *            the number of randomly-chosen bases to perform the test for.
         * @return <code>false</code> if any witness to compositeness is found amongst the chosen bases
         *         (so <code>candidate</code> is definitely NOT prime), or else <code>true</code>
         *         (indicating primality with some probability dependent on the number of iterations
         *         that were performed).
         */
        public static bool IsMRProbablePrime(BigInteger candidate, SecureRandom random, int iterations)
        {
            CheckCandidate(candidate, "candidate");

            if (random == null)
                throw new ArgumentException("cannot be null", "random");
            if (iterations < 1)
                throw new ArgumentException("must be > 0", "iterations");

            if (candidate.BitLength == 2)
                return true;
            if (!candidate.TestBit(0))
                return false;

            BigInteger w = candidate;
            BigInteger wSubOne = candidate.Subtract(One);
            BigInteger wSubTwo = candidate.Subtract(Two);

            int a = wSubOne.GetLowestSetBit();
            BigInteger m = wSubOne.ShiftRight(a);

            for (int i = 0; i < iterations; ++i)
            {
                BigInteger b = BigIntegers.CreateRandomInRange(Two, wSubTwo, random);

                if (!ImplMRProbablePrimeToBase(w, wSubOne, m, a, b))
                    return false;
            }

            return true;
        }

        /**
         * FIPS 186-4 C.3.1 Miller-Rabin Probabilistic Primality Test (to a fixed base).
         * 
         * Run a single iteration of the Miller-Rabin algorithm against the specified base.
         * 
         * @param candidate
         *            the {@link BigInteger} instance to test for primality.
         * @param baseValue
         *            the base value to use for this iteration.
         * @return <code>false</code> if the specified base is a witness to compositeness (so
         *         <code>candidate</code> is definitely NOT prime), or else <code>true</code>.
         */
        public static bool IsMRProbablePrimeToBase(BigInteger candidate, BigInteger baseValue)
        {
            CheckCandidate(candidate, "candidate");
            CheckCandidate(baseValue, "baseValue");

            if (baseValue.CompareTo(candidate.Subtract(One)) >= 0)
                throw new ArgumentException("must be < ('candidate' - 1)", "baseValue");

            if (candidate.BitLength == 2)
                return true;

            BigInteger w = candidate;
            BigInteger wSubOne = candidate.Subtract(One);

            int a = wSubOne.GetLowestSetBit();
            BigInteger m = wSubOne.ShiftRight(a);

            return ImplMRProbablePrimeToBase(w, wSubOne, m, a, baseValue);
        }

        private static void CheckCandidate(BigInteger n, string name)
        {
            if (n == null || n.SignValue < 1 || n.BitLength < 2)
                throw new ArgumentException("must be non-null and >= 2", name);
        }

        private static bool ImplHasAnySmallFactors(BigInteger x)
        {
            /*
             * Bundle trial divisors into ~32-bit moduli then use fast tests on the ~32-bit remainders.
             */
            int m = 2 * 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23;
            int r = x.Mod(BigInteger.ValueOf(m)).IntValue;
            if ((r % 2) == 0 || (r % 3) == 0 || (r % 5) == 0 || (r % 7) == 0 || (r % 11) == 0 || (r % 13) == 0
                || (r % 17) == 0 || (r % 19) == 0 || (r % 23) == 0)
            {
                return true;
            }

            m = 29 * 31 * 37 * 41 * 43;
            r = x.Mod(BigInteger.ValueOf(m)).IntValue;
            if ((r % 29) == 0 || (r % 31) == 0 || (r % 37) == 0 || (r % 41) == 0 || (r % 43) == 0)
            {
                return true;
            }

            m = 47 * 53 * 59 * 61 * 67;
            r = x.Mod(BigInteger.ValueOf(m)).IntValue;
            if ((r % 47) == 0 || (r % 53) == 0 || (r % 59) == 0 || (r % 61) == 0 || (r % 67) == 0)
            {
                return true;
            }

            m = 71 * 73 * 79 * 83;
            r = x.Mod(BigInteger.ValueOf(m)).IntValue;
            if ((r % 71) == 0 || (r % 73) == 0 || (r % 79) == 0 || (r % 83) == 0)
            {
                return true;
            }

            m = 89 * 97 * 101 * 103;
            r = x.Mod(BigInteger.ValueOf(m)).IntValue;
            if ((r % 89) == 0 || (r % 97) == 0 || (r % 101) == 0 || (r % 103) == 0)
            {
                return true;
            }

            m = 107 * 109 * 113 * 127;
            r = x.Mod(BigInteger.ValueOf(m)).IntValue;
            if ((r % 107) == 0 || (r % 109) == 0 || (r % 113) == 0 || (r % 127) == 0)
            {
                return true;
            }

            m = 131 * 137 * 139 * 149;
            r = x.Mod(BigInteger.ValueOf(m)).IntValue;
            if ((r % 131) == 0 || (r % 137) == 0 || (r % 139) == 0 || (r % 149) == 0)
            {
                return true;
            }

            m = 151 * 157 * 163 * 167;
            r = x.Mod(BigInteger.ValueOf(m)).IntValue;
            if ((r % 151) == 0 || (r % 157) == 0 || (r % 163) == 0 || (r % 167) == 0)
            {
                return true;
            }

            m = 173 * 179 * 181 * 191;
            r = x.Mod(BigInteger.ValueOf(m)).IntValue;
            if ((r % 173) == 0 || (r % 179) == 0 || (r % 181) == 0 || (r % 191) == 0)
            {
                return true;
            }

            m = 193 * 197 * 199 * 211;
            r = x.Mod(BigInteger.ValueOf(m)).IntValue;
            if ((r % 193) == 0 || (r % 197) == 0 || (r % 199) == 0 || (r % 211) == 0)
            {
                return true;
            }

            /*
             * NOTE: Unit tests depend on SMALL_FACTOR_LIMIT matching the
             * highest small factor tested here.
             */
            return false;
        }

        private static bool ImplMRProbablePrimeToBase(BigInteger w, BigInteger wSubOne, BigInteger m, int a, BigInteger b)
        {
            BigInteger z = b.ModPow(m, w);

            if (z.Equals(One) || z.Equals(wSubOne))
                return true;

            bool result = false;

            for (int j = 1; j < a; ++j)
            {
                z = z.ModPow(Two, w);

                if (z.Equals(wSubOne))
                {
                    result = true;
                    break;
                }

                if (z.Equals(One))
                    return false;
            }

            return result;
        }

        private static STOutput ImplSTRandomPrime(IDigest d, int length, byte[] primeSeed)
        {
            int dLen = d.GetDigestSize();

            if (length < 33)
            {
                int primeGenCounter = 0;

                byte[] c0 = new byte[dLen];
                byte[] c1 = new byte[dLen];

                for (;;)
                {
                    Hash(d, primeSeed, c0, 0);
                    Inc(primeSeed, 1);

                    Hash(d, primeSeed, c1, 0);
                    Inc(primeSeed, 1);

                    uint c = Extract32(c0) ^ Extract32(c1);
                    c &= (uint.MaxValue >> (32 - length));
                    c |= (1U << (length - 1)) | 1U;

                    ++primeGenCounter;

                    if (IsPrime32(c))
                    {
                        return new STOutput(BigInteger.ValueOf((long)c), primeSeed, primeGenCounter);
                    }

                    if (primeGenCounter > (4 * length))
                    {
                        throw new InvalidOperationException("Too many iterations in Shawe-Taylor Random_Prime Routine");
                    }
                }
            }

            STOutput rec = ImplSTRandomPrime(d, (length + 3)/2, primeSeed);

            {
                BigInteger c0 = rec.Prime;
                primeSeed = rec.PrimeSeed;
                int primeGenCounter = rec.PrimeGenCounter;

                int outlen = 8 * dLen;
                int iterations = (length - 1)/outlen;

                int oldCounter = primeGenCounter;

                BigInteger x = HashGen(d, primeSeed, iterations + 1);
                x = x.Mod(One.ShiftLeft(length - 1)).SetBit(length - 1);

                BigInteger c0x2 = c0.ShiftLeft(1);
                BigInteger tx2 = x.Subtract(One).Divide(c0x2).Add(One).ShiftLeft(1);
                int dt = 0;

                BigInteger c = tx2.Multiply(c0).Add(One);

                /*
                 * TODO Since the candidate primes are generated by constant steps ('c0x2'),
                 * sieving could be used here in place of the 'HasAnySmallFactors' approach.
                 */
                for (;;)
                {
                    if (c.BitLength > length)
                    {
                        tx2 = One.ShiftLeft(length - 1).Subtract(One).Divide(c0x2).Add(One).ShiftLeft(1);
                        c = tx2.Multiply(c0).Add(One);
                    }

                    ++primeGenCounter;

                    /*
                     * This is an optimization of the original algorithm, using trial division to screen out
                     * many non-primes quickly.
                     * 
                     * NOTE: 'primeSeed' is still incremented as if we performed the full check!
                     */
                    if (!ImplHasAnySmallFactors(c))
                    {
                        BigInteger a = HashGen(d, primeSeed, iterations + 1);
                        a = a.Mod(c.Subtract(Three)).Add(Two);

                        tx2 = tx2.Add(BigInteger.ValueOf(dt));
                        dt = 0;

                        BigInteger z = a.ModPow(tx2, c);

                        if (c.Gcd(z.Subtract(One)).Equals(One) && z.ModPow(c0, c).Equals(One))
                        {
                            return new STOutput(c, primeSeed, primeGenCounter);
                        }
                    }
                    else
                    {
                        Inc(primeSeed, iterations + 1);
                    }

                    if (primeGenCounter >= ((4 * length) + oldCounter))
                    {
                        throw new InvalidOperationException("Too many iterations in Shawe-Taylor Random_Prime Routine");
                    }

                    dt += 2;
                    c = c.Add(c0x2);
                }
            }
        }

        private static uint Extract32(byte[] bs)
        {
            uint result = 0;

            int count = System.Math.Min(4, bs.Length);
            for (int i = 0; i < count; ++i)
            {
                uint b = bs[bs.Length - (i + 1)];
                result |= (b << (8 * i));
            }

            return result;
        }

        private static void Hash(IDigest d, byte[] input, byte[] output, int outPos)
        {
            d.BlockUpdate(input, 0, input.Length);
            d.DoFinal(output, outPos);
        }

        private static BigInteger HashGen(IDigest d, byte[] seed, int count)
        {
            int dLen = d.GetDigestSize();
            int pos = count * dLen;
            byte[] buf = new byte[pos];
            for (int i = 0; i < count; ++i)
            {
                pos -= dLen;
                Hash(d, seed, buf, pos);
                Inc(seed, 1);
            }
            return new BigInteger(1, buf);
        }

        private static void Inc(byte[] seed, int c)
        {
            int pos = seed.Length;
            while (c > 0 && --pos >= 0)
            {
                c += seed[pos];
                seed[pos] = (byte)c;
                c >>= 8;
            }
        }

        private static bool IsPrime32(uint x)
        {
            /*
             * Use wheel factorization with 2, 3, 5 to select trial divisors.
             */

            if (x <= 5)
            {
                return x == 2 || x == 3 || x == 5;
            }

            if ((x & 1) == 0 || (x % 3) == 0 || (x % 5) == 0)
            {
                return false;
            }

            uint[] ds = new uint[]{ 1, 7, 11, 13, 17, 19, 23, 29 };
            uint b = 0;
            for (int pos = 1; ; pos = 0)
            {
                /*
                 * Trial division by wheel-selected divisors
                 */
                while (pos < ds.Length)
                {
                    uint d = b + ds[pos];
                    if (x % d == 0)
                    {
                        return x < 30;
                    }
                    ++pos;
                }

                b += 30;

                if ((b >> 16 != 0) || (b * b >= x))
                {
                    return true;
                }
            }
        }
    }
}