Primes.cs
20.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
using System;
using Org.BouncyCastle.Crypto;
using Org.BouncyCastle.Security;
using Org.BouncyCastle.Utilities;
namespace Org.BouncyCastle.Math
{
/**
* Utility methods for generating primes and testing for primality.
*/
public abstract class Primes
{
public static readonly int SmallFactorLimit = 211;
private static readonly BigInteger One = BigInteger.One;
private static readonly BigInteger Two = BigInteger.Two;
private static readonly BigInteger Three = BigInteger.Three;
/**
* Used to return the output from the
* {@linkplain Primes#enhancedMRProbablePrimeTest(BigInteger, SecureRandom, int) Enhanced
* Miller-Rabin Probabilistic Primality Test}
*/
public class MROutput
{
internal static MROutput ProbablyPrime()
{
return new MROutput(false, null);
}
internal static MROutput ProvablyCompositeWithFactor(BigInteger factor)
{
return new MROutput(true, factor);
}
internal static MROutput ProvablyCompositeNotPrimePower()
{
return new MROutput(true, null);
}
private readonly bool mProvablyComposite;
private readonly BigInteger mFactor;
private MROutput(bool provablyComposite, BigInteger factor)
{
this.mProvablyComposite = provablyComposite;
this.mFactor = factor;
}
public BigInteger Factor
{
get { return mFactor; }
}
public bool IsProvablyComposite
{
get { return mProvablyComposite; }
}
public bool IsNotPrimePower
{
get { return mProvablyComposite && mFactor == null; }
}
}
/**
* Used to return the output from the {@linkplain Primes#generateSTRandomPrime(Digest, int, byte[]) Shawe-Taylor Random_Prime Routine}
*/
public class STOutput
{
private readonly BigInteger mPrime;
private readonly byte[] mPrimeSeed;
private readonly int mPrimeGenCounter;
internal STOutput(BigInteger prime, byte[] primeSeed, int primeGenCounter)
{
this.mPrime = prime;
this.mPrimeSeed = primeSeed;
this.mPrimeGenCounter = primeGenCounter;
}
public BigInteger Prime
{
get { return mPrime; }
}
public byte[] PrimeSeed
{
get { return mPrimeSeed; }
}
public int PrimeGenCounter
{
get { return mPrimeGenCounter; }
}
}
/**
* FIPS 186-4 C.6 Shawe-Taylor Random_Prime Routine
*
* Construct a provable prime number using a hash function.
*
* @param hash
* the {@link Digest} instance to use (as "Hash()"). Cannot be null.
* @param length
* the length (in bits) of the prime to be generated. Must be at least 2.
* @param inputSeed
* the seed to be used for the generation of the requested prime. Cannot be null or
* empty.
* @return an {@link STOutput} instance containing the requested prime.
*/
public static STOutput GenerateSTRandomPrime(IDigest hash, int length, byte[] inputSeed)
{
if (hash == null)
throw new ArgumentNullException("hash");
if (length < 2)
throw new ArgumentException("must be >= 2", "length");
if (inputSeed == null)
throw new ArgumentNullException("inputSeed");
if (inputSeed.Length == 0)
throw new ArgumentException("cannot be empty", "inputSeed");
return ImplSTRandomPrime(hash, length, Arrays.Clone(inputSeed));
}
/**
* FIPS 186-4 C.3.2 Enhanced Miller-Rabin Probabilistic Primality Test
*
* Run several iterations of the Miller-Rabin algorithm with randomly-chosen bases. This is an
* alternative to {@link #isMRProbablePrime(BigInteger, SecureRandom, int)} that provides more
* information about a composite candidate, which may be useful when generating or validating
* RSA moduli.
*
* @param candidate
* the {@link BigInteger} instance to test for primality.
* @param random
* the source of randomness to use to choose bases.
* @param iterations
* the number of randomly-chosen bases to perform the test for.
* @return an {@link MROutput} instance that can be further queried for details.
*/
public static MROutput EnhancedMRProbablePrimeTest(BigInteger candidate, SecureRandom random, int iterations)
{
CheckCandidate(candidate, "candidate");
if (random == null)
throw new ArgumentNullException("random");
if (iterations < 1)
throw new ArgumentException("must be > 0", "iterations");
if (candidate.BitLength == 2)
return MROutput.ProbablyPrime();
if (!candidate.TestBit(0))
return MROutput.ProvablyCompositeWithFactor(Two);
BigInteger w = candidate;
BigInteger wSubOne = candidate.Subtract(One);
BigInteger wSubTwo = candidate.Subtract(Two);
int a = wSubOne.GetLowestSetBit();
BigInteger m = wSubOne.ShiftRight(a);
for (int i = 0; i < iterations; ++i)
{
BigInteger b = BigIntegers.CreateRandomInRange(Two, wSubTwo, random);
BigInteger g = b.Gcd(w);
if (g.CompareTo(One) > 0)
return MROutput.ProvablyCompositeWithFactor(g);
BigInteger z = b.ModPow(m, w);
if (z.Equals(One) || z.Equals(wSubOne))
continue;
bool primeToBase = false;
BigInteger x = z;
for (int j = 1; j < a; ++j)
{
z = z.ModPow(Two, w);
if (z.Equals(wSubOne))
{
primeToBase = true;
break;
}
if (z.Equals(One))
break;
x = z;
}
if (!primeToBase)
{
if (!z.Equals(One))
{
x = z;
z = z.ModPow(Two, w);
if (!z.Equals(One))
{
x = z;
}
}
g = x.Subtract(One).Gcd(w);
if (g.CompareTo(One) > 0)
return MROutput.ProvablyCompositeWithFactor(g);
return MROutput.ProvablyCompositeNotPrimePower();
}
}
return MROutput.ProbablyPrime();
}
/**
* A fast check for small divisors, up to some implementation-specific limit.
*
* @param candidate
* the {@link BigInteger} instance to test for division by small factors.
*
* @return <code>true</code> if the candidate is found to have any small factors,
* <code>false</code> otherwise.
*/
public static bool HasAnySmallFactors(BigInteger candidate)
{
CheckCandidate(candidate, "candidate");
return ImplHasAnySmallFactors(candidate);
}
/**
* FIPS 186-4 C.3.1 Miller-Rabin Probabilistic Primality Test
*
* Run several iterations of the Miller-Rabin algorithm with randomly-chosen bases.
*
* @param candidate
* the {@link BigInteger} instance to test for primality.
* @param random
* the source of randomness to use to choose bases.
* @param iterations
* the number of randomly-chosen bases to perform the test for.
* @return <code>false</code> if any witness to compositeness is found amongst the chosen bases
* (so <code>candidate</code> is definitely NOT prime), or else <code>true</code>
* (indicating primality with some probability dependent on the number of iterations
* that were performed).
*/
public static bool IsMRProbablePrime(BigInteger candidate, SecureRandom random, int iterations)
{
CheckCandidate(candidate, "candidate");
if (random == null)
throw new ArgumentException("cannot be null", "random");
if (iterations < 1)
throw new ArgumentException("must be > 0", "iterations");
if (candidate.BitLength == 2)
return true;
if (!candidate.TestBit(0))
return false;
BigInteger w = candidate;
BigInteger wSubOne = candidate.Subtract(One);
BigInteger wSubTwo = candidate.Subtract(Two);
int a = wSubOne.GetLowestSetBit();
BigInteger m = wSubOne.ShiftRight(a);
for (int i = 0; i < iterations; ++i)
{
BigInteger b = BigIntegers.CreateRandomInRange(Two, wSubTwo, random);
if (!ImplMRProbablePrimeToBase(w, wSubOne, m, a, b))
return false;
}
return true;
}
/**
* FIPS 186-4 C.3.1 Miller-Rabin Probabilistic Primality Test (to a fixed base).
*
* Run a single iteration of the Miller-Rabin algorithm against the specified base.
*
* @param candidate
* the {@link BigInteger} instance to test for primality.
* @param baseValue
* the base value to use for this iteration.
* @return <code>false</code> if the specified base is a witness to compositeness (so
* <code>candidate</code> is definitely NOT prime), or else <code>true</code>.
*/
public static bool IsMRProbablePrimeToBase(BigInteger candidate, BigInteger baseValue)
{
CheckCandidate(candidate, "candidate");
CheckCandidate(baseValue, "baseValue");
if (baseValue.CompareTo(candidate.Subtract(One)) >= 0)
throw new ArgumentException("must be < ('candidate' - 1)", "baseValue");
if (candidate.BitLength == 2)
return true;
BigInteger w = candidate;
BigInteger wSubOne = candidate.Subtract(One);
int a = wSubOne.GetLowestSetBit();
BigInteger m = wSubOne.ShiftRight(a);
return ImplMRProbablePrimeToBase(w, wSubOne, m, a, baseValue);
}
private static void CheckCandidate(BigInteger n, string name)
{
if (n == null || n.SignValue < 1 || n.BitLength < 2)
throw new ArgumentException("must be non-null and >= 2", name);
}
private static bool ImplHasAnySmallFactors(BigInteger x)
{
/*
* Bundle trial divisors into ~32-bit moduli then use fast tests on the ~32-bit remainders.
*/
int m = 2 * 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23;
int r = x.Mod(BigInteger.ValueOf(m)).IntValue;
if ((r % 2) == 0 || (r % 3) == 0 || (r % 5) == 0 || (r % 7) == 0 || (r % 11) == 0 || (r % 13) == 0
|| (r % 17) == 0 || (r % 19) == 0 || (r % 23) == 0)
{
return true;
}
m = 29 * 31 * 37 * 41 * 43;
r = x.Mod(BigInteger.ValueOf(m)).IntValue;
if ((r % 29) == 0 || (r % 31) == 0 || (r % 37) == 0 || (r % 41) == 0 || (r % 43) == 0)
{
return true;
}
m = 47 * 53 * 59 * 61 * 67;
r = x.Mod(BigInteger.ValueOf(m)).IntValue;
if ((r % 47) == 0 || (r % 53) == 0 || (r % 59) == 0 || (r % 61) == 0 || (r % 67) == 0)
{
return true;
}
m = 71 * 73 * 79 * 83;
r = x.Mod(BigInteger.ValueOf(m)).IntValue;
if ((r % 71) == 0 || (r % 73) == 0 || (r % 79) == 0 || (r % 83) == 0)
{
return true;
}
m = 89 * 97 * 101 * 103;
r = x.Mod(BigInteger.ValueOf(m)).IntValue;
if ((r % 89) == 0 || (r % 97) == 0 || (r % 101) == 0 || (r % 103) == 0)
{
return true;
}
m = 107 * 109 * 113 * 127;
r = x.Mod(BigInteger.ValueOf(m)).IntValue;
if ((r % 107) == 0 || (r % 109) == 0 || (r % 113) == 0 || (r % 127) == 0)
{
return true;
}
m = 131 * 137 * 139 * 149;
r = x.Mod(BigInteger.ValueOf(m)).IntValue;
if ((r % 131) == 0 || (r % 137) == 0 || (r % 139) == 0 || (r % 149) == 0)
{
return true;
}
m = 151 * 157 * 163 * 167;
r = x.Mod(BigInteger.ValueOf(m)).IntValue;
if ((r % 151) == 0 || (r % 157) == 0 || (r % 163) == 0 || (r % 167) == 0)
{
return true;
}
m = 173 * 179 * 181 * 191;
r = x.Mod(BigInteger.ValueOf(m)).IntValue;
if ((r % 173) == 0 || (r % 179) == 0 || (r % 181) == 0 || (r % 191) == 0)
{
return true;
}
m = 193 * 197 * 199 * 211;
r = x.Mod(BigInteger.ValueOf(m)).IntValue;
if ((r % 193) == 0 || (r % 197) == 0 || (r % 199) == 0 || (r % 211) == 0)
{
return true;
}
/*
* NOTE: Unit tests depend on SMALL_FACTOR_LIMIT matching the
* highest small factor tested here.
*/
return false;
}
private static bool ImplMRProbablePrimeToBase(BigInteger w, BigInteger wSubOne, BigInteger m, int a, BigInteger b)
{
BigInteger z = b.ModPow(m, w);
if (z.Equals(One) || z.Equals(wSubOne))
return true;
bool result = false;
for (int j = 1; j < a; ++j)
{
z = z.ModPow(Two, w);
if (z.Equals(wSubOne))
{
result = true;
break;
}
if (z.Equals(One))
return false;
}
return result;
}
private static STOutput ImplSTRandomPrime(IDigest d, int length, byte[] primeSeed)
{
int dLen = d.GetDigestSize();
if (length < 33)
{
int primeGenCounter = 0;
byte[] c0 = new byte[dLen];
byte[] c1 = new byte[dLen];
for (;;)
{
Hash(d, primeSeed, c0, 0);
Inc(primeSeed, 1);
Hash(d, primeSeed, c1, 0);
Inc(primeSeed, 1);
uint c = Extract32(c0) ^ Extract32(c1);
c &= (uint.MaxValue >> (32 - length));
c |= (1U << (length - 1)) | 1U;
++primeGenCounter;
if (IsPrime32(c))
{
return new STOutput(BigInteger.ValueOf((long)c), primeSeed, primeGenCounter);
}
if (primeGenCounter > (4 * length))
{
throw new InvalidOperationException("Too many iterations in Shawe-Taylor Random_Prime Routine");
}
}
}
STOutput rec = ImplSTRandomPrime(d, (length + 3)/2, primeSeed);
{
BigInteger c0 = rec.Prime;
primeSeed = rec.PrimeSeed;
int primeGenCounter = rec.PrimeGenCounter;
int outlen = 8 * dLen;
int iterations = (length - 1)/outlen;
int oldCounter = primeGenCounter;
BigInteger x = HashGen(d, primeSeed, iterations + 1);
x = x.Mod(One.ShiftLeft(length - 1)).SetBit(length - 1);
BigInteger c0x2 = c0.ShiftLeft(1);
BigInteger tx2 = x.Subtract(One).Divide(c0x2).Add(One).ShiftLeft(1);
int dt = 0;
BigInteger c = tx2.Multiply(c0).Add(One);
/*
* TODO Since the candidate primes are generated by constant steps ('c0x2'),
* sieving could be used here in place of the 'HasAnySmallFactors' approach.
*/
for (;;)
{
if (c.BitLength > length)
{
tx2 = One.ShiftLeft(length - 1).Subtract(One).Divide(c0x2).Add(One).ShiftLeft(1);
c = tx2.Multiply(c0).Add(One);
}
++primeGenCounter;
/*
* This is an optimization of the original algorithm, using trial division to screen out
* many non-primes quickly.
*
* NOTE: 'primeSeed' is still incremented as if we performed the full check!
*/
if (!ImplHasAnySmallFactors(c))
{
BigInteger a = HashGen(d, primeSeed, iterations + 1);
a = a.Mod(c.Subtract(Three)).Add(Two);
tx2 = tx2.Add(BigInteger.ValueOf(dt));
dt = 0;
BigInteger z = a.ModPow(tx2, c);
if (c.Gcd(z.Subtract(One)).Equals(One) && z.ModPow(c0, c).Equals(One))
{
return new STOutput(c, primeSeed, primeGenCounter);
}
}
else
{
Inc(primeSeed, iterations + 1);
}
if (primeGenCounter >= ((4 * length) + oldCounter))
{
throw new InvalidOperationException("Too many iterations in Shawe-Taylor Random_Prime Routine");
}
dt += 2;
c = c.Add(c0x2);
}
}
}
private static uint Extract32(byte[] bs)
{
uint result = 0;
int count = System.Math.Min(4, bs.Length);
for (int i = 0; i < count; ++i)
{
uint b = bs[bs.Length - (i + 1)];
result |= (b << (8 * i));
}
return result;
}
private static void Hash(IDigest d, byte[] input, byte[] output, int outPos)
{
d.BlockUpdate(input, 0, input.Length);
d.DoFinal(output, outPos);
}
private static BigInteger HashGen(IDigest d, byte[] seed, int count)
{
int dLen = d.GetDigestSize();
int pos = count * dLen;
byte[] buf = new byte[pos];
for (int i = 0; i < count; ++i)
{
pos -= dLen;
Hash(d, seed, buf, pos);
Inc(seed, 1);
}
return new BigInteger(1, buf);
}
private static void Inc(byte[] seed, int c)
{
int pos = seed.Length;
while (c > 0 && --pos >= 0)
{
c += seed[pos];
seed[pos] = (byte)c;
c >>= 8;
}
}
private static bool IsPrime32(uint x)
{
/*
* Use wheel factorization with 2, 3, 5 to select trial divisors.
*/
if (x <= 5)
{
return x == 2 || x == 3 || x == 5;
}
if ((x & 1) == 0 || (x % 3) == 0 || (x % 5) == 0)
{
return false;
}
uint[] ds = new uint[]{ 1, 7, 11, 13, 17, 19, 23, 29 };
uint b = 0;
for (int pos = 1; ; pos = 0)
{
/*
* Trial division by wheel-selected divisors
*/
while (pos < ds.Length)
{
uint d = b + ds[pos];
if (x % d == 0)
{
return x < 30;
}
++pos;
}
b += 30;
if ((b >> 16 != 0) || (b * b >= x))
{
return true;
}
}
}
}
}