PgpPublicKeyEncryptedData.cs
8.43 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
using System;
using System.IO;
using Org.BouncyCastle.Asn1.X9;
using Org.BouncyCastle.Crypto;
using Org.BouncyCastle.Crypto.IO;
using Org.BouncyCastle.Crypto.Generators;
using Org.BouncyCastle.Crypto.Parameters;
using Org.BouncyCastle.Math;
using Org.BouncyCastle.Math.EC;
using Org.BouncyCastle.Security;
using Org.BouncyCastle.Utilities.IO;
namespace Org.BouncyCastle.Bcpg.OpenPgp
{
/// <remarks>A public key encrypted data object.</remarks>
public class PgpPublicKeyEncryptedData
: PgpEncryptedData
{
private PublicKeyEncSessionPacket keyData;
internal PgpPublicKeyEncryptedData(
PublicKeyEncSessionPacket keyData,
InputStreamPacket encData)
: base(encData)
{
this.keyData = keyData;
}
private static IBufferedCipher GetKeyCipher(
PublicKeyAlgorithmTag algorithm)
{
try
{
switch (algorithm)
{
case PublicKeyAlgorithmTag.RsaEncrypt:
case PublicKeyAlgorithmTag.RsaGeneral:
return CipherUtilities.GetCipher("RSA//PKCS1Padding");
case PublicKeyAlgorithmTag.ElGamalEncrypt:
case PublicKeyAlgorithmTag.ElGamalGeneral:
return CipherUtilities.GetCipher("ElGamal/ECB/PKCS1Padding");
default:
throw new PgpException("unknown asymmetric algorithm: " + algorithm);
}
}
catch (PgpException e)
{
throw e;
}
catch (Exception e)
{
throw new PgpException("Exception creating cipher", e);
}
}
private bool ConfirmCheckSum(
byte[] sessionInfo)
{
int check = 0;
for (int i = 1; i != sessionInfo.Length - 2; i++)
{
check += sessionInfo[i] & 0xff;
}
return (sessionInfo[sessionInfo.Length - 2] == (byte)(check >> 8))
&& (sessionInfo[sessionInfo.Length - 1] == (byte)(check));
}
/// <summary>The key ID for the key used to encrypt the data.</summary>
public long KeyId
{
get { return keyData.KeyId; }
}
/// <summary>
/// Return the algorithm code for the symmetric algorithm used to encrypt the data.
/// </summary>
public SymmetricKeyAlgorithmTag GetSymmetricAlgorithm(
PgpPrivateKey privKey)
{
byte[] sessionData = RecoverSessionData(privKey);
return (SymmetricKeyAlgorithmTag)sessionData[0];
}
/// <summary>Return the decrypted data stream for the packet.</summary>
public Stream GetDataStream(
PgpPrivateKey privKey)
{
byte[] sessionData = RecoverSessionData(privKey);
if (!ConfirmCheckSum(sessionData))
throw new PgpKeyValidationException("key checksum failed");
SymmetricKeyAlgorithmTag symmAlg = (SymmetricKeyAlgorithmTag)sessionData[0];
if (symmAlg == SymmetricKeyAlgorithmTag.Null)
return encData.GetInputStream();
IBufferedCipher cipher;
string cipherName = PgpUtilities.GetSymmetricCipherName(symmAlg);
string cName = cipherName;
try
{
if (encData is SymmetricEncIntegrityPacket)
{
cName += "/CFB/NoPadding";
}
else
{
cName += "/OpenPGPCFB/NoPadding";
}
cipher = CipherUtilities.GetCipher(cName);
}
catch (PgpException e)
{
throw e;
}
catch (Exception e)
{
throw new PgpException("exception creating cipher", e);
}
try
{
KeyParameter key = ParameterUtilities.CreateKeyParameter(
cipherName, sessionData, 1, sessionData.Length - 3);
byte[] iv = new byte[cipher.GetBlockSize()];
cipher.Init(false, new ParametersWithIV(key, iv));
encStream = BcpgInputStream.Wrap(new CipherStream(encData.GetInputStream(), cipher, null));
if (encData is SymmetricEncIntegrityPacket)
{
truncStream = new TruncatedStream(encStream);
string digestName = PgpUtilities.GetDigestName(HashAlgorithmTag.Sha1);
IDigest digest = DigestUtilities.GetDigest(digestName);
encStream = new DigestStream(truncStream, digest, null);
}
if (Streams.ReadFully(encStream, iv, 0, iv.Length) < iv.Length)
throw new EndOfStreamException("unexpected end of stream.");
int v1 = encStream.ReadByte();
int v2 = encStream.ReadByte();
if (v1 < 0 || v2 < 0)
throw new EndOfStreamException("unexpected end of stream.");
// Note: the oracle attack on the "quick check" bytes is deemed
// a security risk for typical public key encryption usages,
// therefore we do not perform the check.
// bool repeatCheckPassed =
// iv[iv.Length - 2] == (byte)v1
// && iv[iv.Length - 1] == (byte)v2;
//
// // Note: some versions of PGP appear to produce 0 for the extra
// // bytes rather than repeating the two previous bytes
// bool zeroesCheckPassed =
// v1 == 0
// && v2 == 0;
//
// if (!repeatCheckPassed && !zeroesCheckPassed)
// {
// throw new PgpDataValidationException("quick check failed.");
// }
return encStream;
}
catch (PgpException e)
{
throw e;
}
catch (Exception e)
{
throw new PgpException("Exception starting decryption", e);
}
}
private byte[] RecoverSessionData(PgpPrivateKey privKey)
{
byte[][] secKeyData = keyData.GetEncSessionKey();
if (keyData.Algorithm == PublicKeyAlgorithmTag.ECDH)
{
ECDHPublicBcpgKey ecKey = (ECDHPublicBcpgKey)privKey.PublicKeyPacket.Key;
X9ECParameters x9Params = ECKeyPairGenerator.FindECCurveByOid(ecKey.CurveOid);
byte[] enc = secKeyData[0];
int pLen = ((((enc[0] & 0xff) << 8) + (enc[1] & 0xff)) + 7) / 8;
byte[] pEnc = new byte[pLen];
Array.Copy(enc, 2, pEnc, 0, pLen);
byte[] keyEnc = new byte[enc[pLen + 2]];
Array.Copy(enc, 2 + pLen + 1, keyEnc, 0, keyEnc.Length);
ECPoint publicPoint = x9Params.Curve.DecodePoint(pEnc);
ECPrivateKeyParameters privKeyParams = (ECPrivateKeyParameters)privKey.Key;
ECPoint S = publicPoint.Multiply(privKeyParams.D).Normalize();
KeyParameter key = new KeyParameter(Rfc6637Utilities.CreateKey(privKey.PublicKeyPacket, S));
IWrapper w = PgpUtilities.CreateWrapper(ecKey.SymmetricKeyAlgorithm);
w.Init(false, key);
return PgpPad.UnpadSessionData(w.Unwrap(keyEnc, 0, keyEnc.Length));
}
IBufferedCipher cipher = GetKeyCipher(keyData.Algorithm);
try
{
cipher.Init(false, privKey.Key);
}
catch (InvalidKeyException e)
{
throw new PgpException("error setting asymmetric cipher", e);
}
if (keyData.Algorithm == PublicKeyAlgorithmTag.RsaEncrypt
|| keyData.Algorithm == PublicKeyAlgorithmTag.RsaGeneral)
{
byte[] bi = secKeyData[0];
cipher.ProcessBytes(bi, 2, bi.Length - 2);
}
else
{
ElGamalPrivateKeyParameters k = (ElGamalPrivateKeyParameters)privKey.Key;
int size = (k.Parameters.P.BitLength + 7) / 8;
ProcessEncodedMpi(cipher, size, secKeyData[0]);
ProcessEncodedMpi(cipher, size, secKeyData[1]);
}
try
{
return cipher.DoFinal();
}
catch (Exception e)
{
throw new PgpException("exception decrypting secret key", e);
}
}
private static void ProcessEncodedMpi(IBufferedCipher cipher, int size, byte[] mpiEnc)
{
if (mpiEnc.Length - 2 > size) // leading Zero? Shouldn't happen but...
{
cipher.ProcessBytes(mpiEnc, 3, mpiEnc.Length - 3);
}
else
{
byte[] tmp = new byte[size];
Array.Copy(mpiEnc, 2, tmp, tmp.Length - (mpiEnc.Length - 2), mpiEnc.Length - 2);
cipher.ProcessBytes(tmp, 0, tmp.Length);
}
}
}
}