ECFieldElement.cs 28.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
using System;
using System.Diagnostics;

using Org.BouncyCastle.Math.Raw;
using Org.BouncyCastle.Utilities;

namespace Org.BouncyCastle.Math.EC
{
    public abstract class ECFieldElement
    {
        public abstract BigInteger ToBigInteger();
        public abstract string FieldName { get; }
        public abstract int FieldSize { get; }
        public abstract ECFieldElement Add(ECFieldElement b);
        public abstract ECFieldElement AddOne();
        public abstract ECFieldElement Subtract(ECFieldElement b);
        public abstract ECFieldElement Multiply(ECFieldElement b);
        public abstract ECFieldElement Divide(ECFieldElement b);
        public abstract ECFieldElement Negate();
        public abstract ECFieldElement Square();
        public abstract ECFieldElement Invert();
        public abstract ECFieldElement Sqrt();

        public virtual int BitLength
        {
            get { return ToBigInteger().BitLength; }
        }

        public virtual bool IsOne
        {
            get { return BitLength == 1; }
        }

        public virtual bool IsZero
        {
            get { return 0 == ToBigInteger().SignValue; }
        }

        public virtual ECFieldElement MultiplyMinusProduct(ECFieldElement b, ECFieldElement x, ECFieldElement y)
        {
            return Multiply(b).Subtract(x.Multiply(y));
        }

        public virtual ECFieldElement MultiplyPlusProduct(ECFieldElement b, ECFieldElement x, ECFieldElement y)
        {
            return Multiply(b).Add(x.Multiply(y));
        }

        public virtual ECFieldElement SquareMinusProduct(ECFieldElement x, ECFieldElement y)
        {
            return Square().Subtract(x.Multiply(y));
        }

        public virtual ECFieldElement SquarePlusProduct(ECFieldElement x, ECFieldElement y)
        {
            return Square().Add(x.Multiply(y));
        }

        public virtual ECFieldElement SquarePow(int pow)
        {
            ECFieldElement r = this;
            for (int i = 0; i < pow; ++i)
            {
                r = r.Square();
            }
            return r;
        }

        public virtual bool TestBitZero()
        {
            return ToBigInteger().TestBit(0);
        }

        public override bool Equals(object obj)
        {
            return Equals(obj as ECFieldElement);
        }

        public virtual bool Equals(ECFieldElement other)
        {
            if (this == other)
                return true;
            if (null == other)
                return false;
            return ToBigInteger().Equals(other.ToBigInteger());
        }

        public override int GetHashCode()
        {
            return ToBigInteger().GetHashCode();
        }

        public override string ToString()
        {
            return this.ToBigInteger().ToString(16);
        }

        public virtual byte[] GetEncoded()
        {
            return BigIntegers.AsUnsignedByteArray((FieldSize + 7) / 8, ToBigInteger());
        }
    }

    public class FpFieldElement
        : ECFieldElement
    {
        private readonly BigInteger q, r, x;

        internal static BigInteger CalculateResidue(BigInteger p)
        {
            int bitLength = p.BitLength;
            if (bitLength >= 96)
            {
                BigInteger firstWord = p.ShiftRight(bitLength - 64);
                if (firstWord.LongValue == -1L)
                {
                    return BigInteger.One.ShiftLeft(bitLength).Subtract(p);
                }
                if ((bitLength & 7) == 0)
                {
                    return BigInteger.One.ShiftLeft(bitLength << 1).Divide(p).Negate();
                }
            }
            return null;
        }

        [Obsolete("Use ECCurve.FromBigInteger to construct field elements")]
        public FpFieldElement(BigInteger q, BigInteger x)
            : this(q, CalculateResidue(q), x)
        {
        }

        internal FpFieldElement(BigInteger q, BigInteger r, BigInteger x)
        {
            if (x == null || x.SignValue < 0 || x.CompareTo(q) >= 0)
                throw new ArgumentException("value invalid in Fp field element", "x");

            this.q = q;
            this.r = r;
            this.x = x;
        }

        public override BigInteger ToBigInteger()
        {
            return x;
        }

        /**
         * return the field name for this field.
         *
         * @return the string "Fp".
         */
        public override string FieldName
        {
            get { return "Fp"; }
        }

        public override int FieldSize
        {
            get { return q.BitLength; }
        }

        public BigInteger Q
        {
            get { return q; }
        }

        public override ECFieldElement Add(
            ECFieldElement b)
        {
            return new FpFieldElement(q, r, ModAdd(x, b.ToBigInteger()));
        }

        public override ECFieldElement AddOne()
        {
            BigInteger x2 = x.Add(BigInteger.One);
            if (x2.CompareTo(q) == 0)
            {
                x2 = BigInteger.Zero;
            }
            return new FpFieldElement(q, r, x2);
        }

        public override ECFieldElement Subtract(
            ECFieldElement b)
        {
            return new FpFieldElement(q, r, ModSubtract(x, b.ToBigInteger()));
        }

        public override ECFieldElement Multiply(
            ECFieldElement b)
        {
            return new FpFieldElement(q, r, ModMult(x, b.ToBigInteger()));
        }

        public override ECFieldElement MultiplyMinusProduct(ECFieldElement b, ECFieldElement x, ECFieldElement y)
        {
            BigInteger ax = this.x, bx = b.ToBigInteger(), xx = x.ToBigInteger(), yx = y.ToBigInteger();
            BigInteger ab = ax.Multiply(bx);
            BigInteger xy = xx.Multiply(yx);
            return new FpFieldElement(q, r, ModReduce(ab.Subtract(xy)));
        }

        public override ECFieldElement MultiplyPlusProduct(ECFieldElement b, ECFieldElement x, ECFieldElement y)
        {
            BigInteger ax = this.x, bx = b.ToBigInteger(), xx = x.ToBigInteger(), yx = y.ToBigInteger();
            BigInteger ab = ax.Multiply(bx);
            BigInteger xy = xx.Multiply(yx);
            BigInteger sum = ab.Add(xy);
            if (r != null && r.SignValue < 0 && sum.BitLength > (q.BitLength << 1))
            {
                sum = sum.Subtract(q.ShiftLeft(q.BitLength));
            }
            return new FpFieldElement(q, r, ModReduce(sum));
        }

        public override ECFieldElement Divide(
            ECFieldElement b)
        {
            return new FpFieldElement(q, r, ModMult(x, ModInverse(b.ToBigInteger())));
        }

        public override ECFieldElement Negate()
        {
            return x.SignValue == 0 ? this : new FpFieldElement(q, r, q.Subtract(x));
        }

        public override ECFieldElement Square()
        {
            return new FpFieldElement(q, r, ModMult(x, x));
        }

        public override ECFieldElement SquareMinusProduct(ECFieldElement x, ECFieldElement y)
        {
            BigInteger ax = this.x, xx = x.ToBigInteger(), yx = y.ToBigInteger();
            BigInteger aa = ax.Multiply(ax);
            BigInteger xy = xx.Multiply(yx);
            return new FpFieldElement(q, r, ModReduce(aa.Subtract(xy)));
        }

        public override ECFieldElement SquarePlusProduct(ECFieldElement x, ECFieldElement y)
        {
            BigInteger ax = this.x, xx = x.ToBigInteger(), yx = y.ToBigInteger();
            BigInteger aa = ax.Multiply(ax);
            BigInteger xy = xx.Multiply(yx);
            BigInteger sum = aa.Add(xy);
            if (r != null && r.SignValue < 0 && sum.BitLength > (q.BitLength << 1))
            {
                sum = sum.Subtract(q.ShiftLeft(q.BitLength));
            }
            return new FpFieldElement(q, r, ModReduce(sum));
        }

        public override ECFieldElement Invert()
        {
            // TODO Modular inversion can be faster for a (Generalized) Mersenne Prime.
            return new FpFieldElement(q, r, ModInverse(x));
        }

        /**
         * return a sqrt root - the routine verifies that the calculation
         * returns the right value - if none exists it returns null.
         */
        public override ECFieldElement Sqrt()
        {
            if (IsZero || IsOne)
                return this;

            if (!q.TestBit(0))
                throw Platform.CreateNotImplementedException("even value of q");

            if (q.TestBit(1)) // q == 4m + 3
            {
                BigInteger e = q.ShiftRight(2).Add(BigInteger.One);
                return CheckSqrt(new FpFieldElement(q, r, x.ModPow(e, q)));
            }

            if (q.TestBit(2)) // q == 8m + 5
            {
                BigInteger t1 = x.ModPow(q.ShiftRight(3), q);
                BigInteger t2 = ModMult(t1, x);
                BigInteger t3 = ModMult(t2, t1);

                if (t3.Equals(BigInteger.One))
                {
                    return CheckSqrt(new FpFieldElement(q, r, t2));
                }

                // TODO This is constant and could be precomputed
                BigInteger t4 = BigInteger.Two.ModPow(q.ShiftRight(2), q);

                BigInteger y = ModMult(t2, t4);

                return CheckSqrt(new FpFieldElement(q, r, y));
            }

            // q == 8m + 1

            BigInteger legendreExponent = q.ShiftRight(1);
            if (!(x.ModPow(legendreExponent, q).Equals(BigInteger.One)))
                return null;

            BigInteger X = this.x;
            BigInteger fourX = ModDouble(ModDouble(X)); ;

            BigInteger k = legendreExponent.Add(BigInteger.One), qMinusOne = q.Subtract(BigInteger.One);

            BigInteger U, V;
            do
            {
                BigInteger P;
                do
                {
                    P = BigInteger.Arbitrary(q.BitLength);
                }
                while (P.CompareTo(q) >= 0
                    || !ModReduce(P.Multiply(P).Subtract(fourX)).ModPow(legendreExponent, q).Equals(qMinusOne));

                BigInteger[] result = LucasSequence(P, X, k);
                U = result[0];
                V = result[1];

                if (ModMult(V, V).Equals(fourX))
                {
                    return new FpFieldElement(q, r, ModHalfAbs(V));
                }
            }
            while (U.Equals(BigInteger.One) || U.Equals(qMinusOne));

            return null;
        }

        private ECFieldElement CheckSqrt(ECFieldElement z)
        {
            return z.Square().Equals(this) ? z : null;
        }

        private BigInteger[] LucasSequence(
            BigInteger	P,
            BigInteger	Q,
            BigInteger	k)
        {
            // TODO Research and apply "common-multiplicand multiplication here"

            int n = k.BitLength;
            int s = k.GetLowestSetBit();

            Debug.Assert(k.TestBit(s));

            BigInteger Uh = BigInteger.One;
            BigInteger Vl = BigInteger.Two;
            BigInteger Vh = P;
            BigInteger Ql = BigInteger.One;
            BigInteger Qh = BigInteger.One;

            for (int j = n - 1; j >= s + 1; --j)
            {
                Ql = ModMult(Ql, Qh);

                if (k.TestBit(j))
                {
                    Qh = ModMult(Ql, Q);
                    Uh = ModMult(Uh, Vh);
                    Vl = ModReduce(Vh.Multiply(Vl).Subtract(P.Multiply(Ql)));
                    Vh = ModReduce(Vh.Multiply(Vh).Subtract(Qh.ShiftLeft(1)));
                }
                else
                {
                    Qh = Ql;
                    Uh = ModReduce(Uh.Multiply(Vl).Subtract(Ql));
                    Vh = ModReduce(Vh.Multiply(Vl).Subtract(P.Multiply(Ql)));
                    Vl = ModReduce(Vl.Multiply(Vl).Subtract(Ql.ShiftLeft(1)));
                }
            }

            Ql = ModMult(Ql, Qh);
            Qh = ModMult(Ql, Q);
            Uh = ModReduce(Uh.Multiply(Vl).Subtract(Ql));
            Vl = ModReduce(Vh.Multiply(Vl).Subtract(P.Multiply(Ql)));
            Ql = ModMult(Ql, Qh);

            for (int j = 1; j <= s; ++j)
            {
                Uh = ModMult(Uh, Vl);
                Vl = ModReduce(Vl.Multiply(Vl).Subtract(Ql.ShiftLeft(1)));
                Ql = ModMult(Ql, Ql);
            }

            return new BigInteger[] { Uh, Vl };
        }

        protected virtual BigInteger ModAdd(BigInteger x1, BigInteger x2)
        {
            BigInteger x3 = x1.Add(x2);
            if (x3.CompareTo(q) >= 0)
            {
                x3 = x3.Subtract(q);
            }
            return x3;
        }

        protected virtual BigInteger ModDouble(BigInteger x)
        {
            BigInteger _2x = x.ShiftLeft(1);
            if (_2x.CompareTo(q) >= 0)
            {
                _2x = _2x.Subtract(q);
            }
            return _2x;
        }

        protected virtual BigInteger ModHalf(BigInteger x)
        {
            if (x.TestBit(0))
            {
                x = q.Add(x);
            }
            return x.ShiftRight(1);
        }

        protected virtual BigInteger ModHalfAbs(BigInteger x)
        {
            if (x.TestBit(0))
            {
                x = q.Subtract(x);
            }
            return x.ShiftRight(1);
        }

        protected virtual BigInteger ModInverse(BigInteger x)
        {
            int bits = FieldSize;
            int len = (bits + 31) >> 5;
            uint[] p = Nat.FromBigInteger(bits, q);
            uint[] n = Nat.FromBigInteger(bits, x);
            uint[] z = Nat.Create(len);
            Mod.Invert(p, n, z);
            return Nat.ToBigInteger(len, z);
        }

        protected virtual BigInteger ModMult(BigInteger x1, BigInteger x2)
        {
            return ModReduce(x1.Multiply(x2));
        }

        protected virtual BigInteger ModReduce(BigInteger x)
        {
            if (r == null)
            {
                x = x.Mod(q);
            }
            else
            {
                bool negative = x.SignValue < 0;
                if (negative)
                {
                    x = x.Abs();
                }
                int qLen = q.BitLength;
                if (r.SignValue > 0)
                {
                    BigInteger qMod = BigInteger.One.ShiftLeft(qLen);
                    bool rIsOne = r.Equals(BigInteger.One);
                    while (x.BitLength > (qLen + 1))
                    {
                        BigInteger u = x.ShiftRight(qLen);
                        BigInteger v = x.Remainder(qMod);
                        if (!rIsOne)
                        {
                            u = u.Multiply(r);
                        }
                        x = u.Add(v);
                    }
                }
                else
                {
                    int d = ((qLen - 1) & 31) + 1;
                    BigInteger mu = r.Negate();
                    BigInteger u = mu.Multiply(x.ShiftRight(qLen - d));
                    BigInteger quot = u.ShiftRight(qLen + d);
                    BigInteger v = quot.Multiply(q);
                    BigInteger bk1 = BigInteger.One.ShiftLeft(qLen + d);
                    v = v.Remainder(bk1);
                    x = x.Remainder(bk1);
                    x = x.Subtract(v);
                    if (x.SignValue < 0)
                    {
                        x = x.Add(bk1);
                    }
                }
                while (x.CompareTo(q) >= 0)
                {
                    x = x.Subtract(q);
                }
                if (negative && x.SignValue != 0)
                {
                    x = q.Subtract(x);
                }
            }
            return x;
        }

        protected virtual BigInteger ModSubtract(BigInteger x1, BigInteger x2)
        {
            BigInteger x3 = x1.Subtract(x2);
            if (x3.SignValue < 0)
            {
                x3 = x3.Add(q);
            }
            return x3;
        }

        public override bool Equals(
            object obj)
        {
            if (obj == this)
                return true;

            FpFieldElement other = obj as FpFieldElement;

            if (other == null)
                return false;

            return Equals(other);
        }

        public virtual bool Equals(
            FpFieldElement other)
        {
            return q.Equals(other.q) && base.Equals(other);
        }

        public override int GetHashCode()
        {
            return q.GetHashCode() ^ base.GetHashCode();
        }
    }

    /**
     * Class representing the Elements of the finite field
     * <code>F<sub>2<sup>m</sup></sub></code> in polynomial basis (PB)
     * representation. Both trinomial (Tpb) and pentanomial (Ppb) polynomial
     * basis representations are supported. Gaussian normal basis (GNB)
     * representation is not supported.
     */
    public class F2mFieldElement
        : ECFieldElement
    {
        /**
         * Indicates gaussian normal basis representation (GNB). Number chosen
         * according to X9.62. GNB is not implemented at present.
         */
        public const int Gnb = 1;

        /**
         * Indicates trinomial basis representation (Tpb). Number chosen
         * according to X9.62.
         */
        public const int Tpb = 2;

        /**
         * Indicates pentanomial basis representation (Ppb). Number chosen
         * according to X9.62.
         */
        public const int Ppb = 3;

        /**
         * Tpb or Ppb.
         */
        private int representation;

        /**
         * The exponent <code>m</code> of <code>F<sub>2<sup>m</sup></sub></code>.
         */
        private int m;

        private int[] ks;

        /**
         * The <code>LongArray</code> holding the bits.
         */
        private LongArray x;

        /**
            * Constructor for Ppb.
            * @param m  The exponent <code>m</code> of
            * <code>F<sub>2<sup>m</sup></sub></code>.
            * @param k1 The integer <code>k1</code> where <code>x<sup>m</sup> +
            * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
            * represents the reduction polynomial <code>f(z)</code>.
            * @param k2 The integer <code>k2</code> where <code>x<sup>m</sup> +
            * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
            * represents the reduction polynomial <code>f(z)</code>.
            * @param k3 The integer <code>k3</code> where <code>x<sup>m</sup> +
            * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
            * represents the reduction polynomial <code>f(z)</code>.
            * @param x The BigInteger representing the value of the field element.
            */
        public F2mFieldElement(
            int			m,
            int			k1,
            int			k2,
            int			k3,
            BigInteger	x)
        {
            if (x == null || x.SignValue < 0 || x.BitLength > m)
                throw new ArgumentException("value invalid in F2m field element", "x");

            if ((k2 == 0) && (k3 == 0))
            {
                this.representation = Tpb;
                this.ks = new int[] { k1 };
            }
            else
            {
                if (k2 >= k3)
                    throw new ArgumentException("k2 must be smaller than k3");
                if (k2 <= 0)
                    throw new ArgumentException("k2 must be larger than 0");

                this.representation = Ppb;
                this.ks = new int[] { k1, k2, k3 };
            }

            this.m = m;
            this.x = new LongArray(x);
        }

        /**
            * Constructor for Tpb.
            * @param m  The exponent <code>m</code> of
            * <code>F<sub>2<sup>m</sup></sub></code>.
            * @param k The integer <code>k</code> where <code>x<sup>m</sup> +
            * x<sup>k</sup> + 1</code> represents the reduction
            * polynomial <code>f(z)</code>.
            * @param x The BigInteger representing the value of the field element.
            */
        public F2mFieldElement(
            int			m,
            int			k,
            BigInteger	x)
            : this(m, k, 0, 0, x)
        {
            // Set k1 to k, and set k2 and k3 to 0
        }

        private F2mFieldElement(int m, int[] ks, LongArray x)
        {
            this.m = m;
            this.representation = (ks.Length == 1) ? Tpb : Ppb;
            this.ks = ks;
            this.x = x;
        }

        public override int BitLength
        {
            get { return x.Degree(); }
        }

        public override bool IsOne
        {
            get { return x.IsOne(); }
        }

        public override bool IsZero
        {
            get { return x.IsZero(); }
        }

        public override bool TestBitZero()
        {
            return x.TestBitZero();
        }

        public override BigInteger ToBigInteger()
        {
            return x.ToBigInteger();
        }

        public override string FieldName
        {
            get { return "F2m"; }
        }

        public override int FieldSize
        {
            get { return m; }
        }

        /**
        * Checks, if the ECFieldElements <code>a</code> and <code>b</code>
        * are elements of the same field <code>F<sub>2<sup>m</sup></sub></code>
        * (having the same representation).
        * @param a field element.
        * @param b field element to be compared.
        * @throws ArgumentException if <code>a</code> and <code>b</code>
        * are not elements of the same field
        * <code>F<sub>2<sup>m</sup></sub></code> (having the same
        * representation).
        */
        public static void CheckFieldElements(
            ECFieldElement	a,
            ECFieldElement	b)
        {
            if (!(a is F2mFieldElement) || !(b is F2mFieldElement))
            {
                throw new ArgumentException("Field elements are not "
                    + "both instances of F2mFieldElement");
            }

            F2mFieldElement aF2m = (F2mFieldElement)a;
            F2mFieldElement bF2m = (F2mFieldElement)b;

            if (aF2m.representation != bF2m.representation)
            {
                // Should never occur
                throw new ArgumentException("One of the F2m field elements has incorrect representation");
            }

            if ((aF2m.m != bF2m.m) || !Arrays.AreEqual(aF2m.ks, bF2m.ks))
            {
                throw new ArgumentException("Field elements are not elements of the same field F2m");
            }
        }

        public override ECFieldElement Add(
            ECFieldElement b)
        {
            // No check performed here for performance reasons. Instead the
            // elements involved are checked in ECPoint.F2m
            // checkFieldElements(this, b);
            LongArray iarrClone = this.x.Copy();
            F2mFieldElement bF2m = (F2mFieldElement)b;
            iarrClone.AddShiftedByWords(bF2m.x, 0);
            return new F2mFieldElement(m, ks, iarrClone);
        }

        public override ECFieldElement AddOne()
        {
            return new F2mFieldElement(m, ks, x.AddOne());
        }

        public override ECFieldElement Subtract(
            ECFieldElement b)
        {
            // Addition and subtraction are the same in F2m
            return Add(b);
        }

        public override ECFieldElement Multiply(
            ECFieldElement b)
        {
            // Right-to-left comb multiplication in the LongArray
            // Input: Binary polynomials a(z) and b(z) of degree at most m-1
            // Output: c(z) = a(z) * b(z) mod f(z)

            // No check performed here for performance reasons. Instead the
            // elements involved are checked in ECPoint.F2m
            // checkFieldElements(this, b);
            return new F2mFieldElement(m, ks, x.ModMultiply(((F2mFieldElement)b).x, m, ks));
        }

        public override ECFieldElement MultiplyMinusProduct(ECFieldElement b, ECFieldElement x, ECFieldElement y)
        {
            return MultiplyPlusProduct(b, x, y);
        }

        public override ECFieldElement MultiplyPlusProduct(ECFieldElement b, ECFieldElement x, ECFieldElement y)
        {
            LongArray ax = this.x, bx = ((F2mFieldElement)b).x, xx = ((F2mFieldElement)x).x, yx = ((F2mFieldElement)y).x;

            LongArray ab = ax.Multiply(bx, m, ks);
            LongArray xy = xx.Multiply(yx, m, ks);

            if (ab == ax || ab == bx)
            {
                ab = (LongArray)ab.Copy();
            }

            ab.AddShiftedByWords(xy, 0);
            ab.Reduce(m, ks);

            return new F2mFieldElement(m, ks, ab);
        }

        public override ECFieldElement Divide(
            ECFieldElement b)
        {
            // There may be more efficient implementations
            ECFieldElement bInv = b.Invert();
            return Multiply(bInv);
        }

        public override ECFieldElement Negate()
        {
            // -x == x holds for all x in F2m
            return this;
        }

        public override ECFieldElement Square()
        {
            return new F2mFieldElement(m, ks, x.ModSquare(m, ks));
        }

        public override ECFieldElement SquareMinusProduct(ECFieldElement x, ECFieldElement y)
        {
            return SquarePlusProduct(x, y);
        }

        public override ECFieldElement SquarePlusProduct(ECFieldElement x, ECFieldElement y)
        {
            LongArray ax = this.x, xx = ((F2mFieldElement)x).x, yx = ((F2mFieldElement)y).x;

            LongArray aa = ax.Square(m, ks);
            LongArray xy = xx.Multiply(yx, m, ks);

            if (aa == ax)
            {
                aa = (LongArray)aa.Copy();
            }

            aa.AddShiftedByWords(xy, 0);
            aa.Reduce(m, ks);

            return new F2mFieldElement(m, ks, aa);
        }

        public override ECFieldElement SquarePow(int pow)
        {
            return pow < 1 ? this : new F2mFieldElement(m, ks, x.ModSquareN(pow, m, ks));
        }

        public override ECFieldElement Invert()
        {
            return new F2mFieldElement(this.m, this.ks, this.x.ModInverse(m, ks));
        }

        public override ECFieldElement Sqrt()
        {
            return (x.IsZero() || x.IsOne()) ? this : SquarePow(m - 1);
        }

        /**
            * @return the representation of the field
            * <code>F<sub>2<sup>m</sup></sub></code>, either of
            * {@link F2mFieldElement.Tpb} (trinomial
            * basis representation) or
            * {@link F2mFieldElement.Ppb} (pentanomial
            * basis representation).
            */
        public int Representation
        {
            get { return this.representation; }
        }

        /**
            * @return the degree <code>m</code> of the reduction polynomial
            * <code>f(z)</code>.
            */
        public int M
        {
            get { return this.m; }
        }

        /**
            * @return Tpb: The integer <code>k</code> where <code>x<sup>m</sup> +
            * x<sup>k</sup> + 1</code> represents the reduction polynomial
            * <code>f(z)</code>.<br/>
            * Ppb: The integer <code>k1</code> where <code>x<sup>m</sup> +
            * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
            * represents the reduction polynomial <code>f(z)</code>.<br/>
            */
        public int K1
        {
            get { return this.ks[0]; }
        }

        /**
            * @return Tpb: Always returns <code>0</code><br/>
            * Ppb: The integer <code>k2</code> where <code>x<sup>m</sup> +
            * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
            * represents the reduction polynomial <code>f(z)</code>.<br/>
            */
        public int K2
        {
            get { return this.ks.Length >= 2 ? this.ks[1] : 0; }
        }

        /**
            * @return Tpb: Always set to <code>0</code><br/>
            * Ppb: The integer <code>k3</code> where <code>x<sup>m</sup> +
            * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
            * represents the reduction polynomial <code>f(z)</code>.<br/>
            */
        public int K3
        {
            get { return this.ks.Length >= 3 ? this.ks[2] : 0; }
        }

        public override bool Equals(
            object obj)
        {
            if (obj == this)
                return true;

            F2mFieldElement other = obj as F2mFieldElement;

            if (other == null)
                return false;

            return Equals(other);
        }

        public virtual bool Equals(
            F2mFieldElement other)
        {
            return ((this.m == other.m)
                && (this.representation == other.representation)
                && Arrays.AreEqual(this.ks, other.ks)
                && (this.x.Equals(other.x)));
        }

        public override int GetHashCode()
        {
            return x.GetHashCode() ^ m ^ Arrays.GetHashCode(ks);
        }
    }
}