ECCurve.cs 36.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
using System;
using System.Collections;

using Org.BouncyCastle.Math.EC.Abc;
using Org.BouncyCastle.Math.EC.Endo;
using Org.BouncyCastle.Math.EC.Multiplier;
using Org.BouncyCastle.Math.Field;
using Org.BouncyCastle.Utilities;

namespace Org.BouncyCastle.Math.EC
{
    /// <remarks>Base class for an elliptic curve.</remarks>
    public abstract class ECCurve
    {
        public const int COORD_AFFINE = 0;
        public const int COORD_HOMOGENEOUS = 1;
        public const int COORD_JACOBIAN = 2;
        public const int COORD_JACOBIAN_CHUDNOVSKY = 3;
        public const int COORD_JACOBIAN_MODIFIED = 4;
        public const int COORD_LAMBDA_AFFINE = 5;
        public const int COORD_LAMBDA_PROJECTIVE = 6;
        public const int COORD_SKEWED = 7;

        public static int[] GetAllCoordinateSystems()
        {
            return new int[]{ COORD_AFFINE, COORD_HOMOGENEOUS, COORD_JACOBIAN, COORD_JACOBIAN_CHUDNOVSKY,
                COORD_JACOBIAN_MODIFIED, COORD_LAMBDA_AFFINE, COORD_LAMBDA_PROJECTIVE, COORD_SKEWED };
        }

        public class Config
        {
            protected ECCurve outer;
            protected int coord;
            protected ECEndomorphism endomorphism;
            protected ECMultiplier multiplier;

            internal Config(ECCurve outer, int coord, ECEndomorphism endomorphism, ECMultiplier multiplier)
            {
                this.outer = outer;
                this.coord = coord;
                this.endomorphism = endomorphism;
                this.multiplier = multiplier;
            }

            public Config SetCoordinateSystem(int coord)
            {
                this.coord = coord;
                return this;
            }

            public Config SetEndomorphism(ECEndomorphism endomorphism)
            {
                this.endomorphism = endomorphism;
                return this;
            }

            public Config SetMultiplier(ECMultiplier multiplier)
            {
                this.multiplier = multiplier;
                return this;
            }

            public ECCurve Create()
            {
                if (!outer.SupportsCoordinateSystem(coord))
                {
                    throw new InvalidOperationException("unsupported coordinate system");
                }

                ECCurve c = outer.CloneCurve();
                if (c == outer)
                {
                    throw new InvalidOperationException("implementation returned current curve");
                }

                c.m_coord = coord;
                c.m_endomorphism = endomorphism;
                c.m_multiplier = multiplier;

                return c;
            }
        }

        protected readonly IFiniteField m_field;
        protected ECFieldElement m_a, m_b;
        protected BigInteger m_order, m_cofactor;

        protected int m_coord = COORD_AFFINE;
        protected ECEndomorphism m_endomorphism = null;
        protected ECMultiplier m_multiplier = null;

        protected ECCurve(IFiniteField field)
        {
            this.m_field = field;
        }

        public abstract int FieldSize { get; }
        public abstract ECFieldElement FromBigInteger(BigInteger x);
        public abstract bool IsValidFieldElement(BigInteger x);

        public virtual Config Configure()
        {
            return new Config(this, this.m_coord, this.m_endomorphism, this.m_multiplier);
        }

        public virtual ECPoint ValidatePoint(BigInteger x, BigInteger y)
        {
            ECPoint p = CreatePoint(x, y);
            if (!p.IsValid())
            {
                throw new ArgumentException("Invalid point coordinates");
            }
            return p;
        }

        [Obsolete("Per-point compression property will be removed")]
        public virtual ECPoint ValidatePoint(BigInteger x, BigInteger y, bool withCompression)
        {
            ECPoint p = CreatePoint(x, y, withCompression);
            if (!p.IsValid())
            {
                throw new ArgumentException("Invalid point coordinates");
            }
            return p;
        }

        public virtual ECPoint CreatePoint(BigInteger x, BigInteger y)
        {
            return CreatePoint(x, y, false);
        }

        [Obsolete("Per-point compression property will be removed")]
        public virtual ECPoint CreatePoint(BigInteger x, BigInteger y, bool withCompression)
        {
            return CreateRawPoint(FromBigInteger(x), FromBigInteger(y), withCompression);
        }

        protected abstract ECCurve CloneCurve();

        protected internal abstract ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, bool withCompression);

        protected internal abstract ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression);

        protected virtual ECMultiplier CreateDefaultMultiplier()
        {
            GlvEndomorphism glvEndomorphism = m_endomorphism as GlvEndomorphism;
            if (glvEndomorphism != null)
            {
                return new GlvMultiplier(this, glvEndomorphism);
            }

            return new WNafL2RMultiplier();
        }

        public virtual bool SupportsCoordinateSystem(int coord)
        {
            return coord == COORD_AFFINE;
        }

        public virtual PreCompInfo GetPreCompInfo(ECPoint point, string name)
        {
            CheckPoint(point);
            lock (point)
            {
                IDictionary table = point.m_preCompTable;
                return table == null ? null : (PreCompInfo)table[name];
            }
        }

        /**
         * Adds <code>PreCompInfo</code> for a point on this curve, under a given name. Used by
         * <code>ECMultiplier</code>s to save the precomputation for this <code>ECPoint</code> for use
         * by subsequent multiplication.
         * 
         * @param point
         *            The <code>ECPoint</code> to store precomputations for.
         * @param name
         *            A <code>String</code> used to index precomputations of different types.
         * @param preCompInfo
         *            The values precomputed by the <code>ECMultiplier</code>.
         */
        public virtual void SetPreCompInfo(ECPoint point, string name, PreCompInfo preCompInfo)
        {
            CheckPoint(point);
            lock (point)
            {
                IDictionary table = point.m_preCompTable;
                if (null == table)
                {
                    point.m_preCompTable = table = Platform.CreateHashtable(4);
                }
                table[name] = preCompInfo;
            }
        }

        public virtual ECPoint ImportPoint(ECPoint p)
        {
            if (this == p.Curve)
            {
                return p;
            }
            if (p.IsInfinity)
            {
                return Infinity;
            }

            // TODO Default behaviour could be improved if the two curves have the same coordinate system by copying any Z coordinates.
            p = p.Normalize();

            return ValidatePoint(p.XCoord.ToBigInteger(), p.YCoord.ToBigInteger(), p.IsCompressed);
        }

        /**
         * Normalization ensures that any projective coordinate is 1, and therefore that the x, y
         * coordinates reflect those of the equivalent point in an affine coordinate system. Where more
         * than one point is to be normalized, this method will generally be more efficient than
         * normalizing each point separately.
         * 
         * @param points
         *            An array of points that will be updated in place with their normalized versions,
         *            where necessary
         */
        public virtual void NormalizeAll(ECPoint[] points)
        {
            NormalizeAll(points, 0, points.Length, null);
        }

        /**
         * Normalization ensures that any projective coordinate is 1, and therefore that the x, y
         * coordinates reflect those of the equivalent point in an affine coordinate system. Where more
         * than one point is to be normalized, this method will generally be more efficient than
         * normalizing each point separately. An (optional) z-scaling factor can be applied; effectively
         * each z coordinate is scaled by this value prior to normalization (but only one
         * actual multiplication is needed).
         * 
         * @param points
         *            An array of points that will be updated in place with their normalized versions,
         *            where necessary
         * @param off
         *            The start of the range of points to normalize
         * @param len
         *            The length of the range of points to normalize
         * @param iso
         *            The (optional) z-scaling factor - can be null
         */
        public virtual void NormalizeAll(ECPoint[] points, int off, int len, ECFieldElement iso)
        {
            CheckPoints(points, off, len);

            switch (this.CoordinateSystem)
            {
                case ECCurve.COORD_AFFINE:
                case ECCurve.COORD_LAMBDA_AFFINE:
                {
                    if (iso != null)
                        throw new ArgumentException("not valid for affine coordinates", "iso");

                    return;
                }
            }

            /*
             * Figure out which of the points actually need to be normalized
             */
            ECFieldElement[] zs = new ECFieldElement[len];
            int[] indices = new int[len];
            int count = 0;
            for (int i = 0; i < len; ++i)
            {
                ECPoint p = points[off + i];
                if (null != p && (iso != null || !p.IsNormalized()))
                {
                    zs[count] = p.GetZCoord(0);
                    indices[count++] = off + i;
                }
            }

            if (count == 0)
            {
                return;
            }

            ECAlgorithms.MontgomeryTrick(zs, 0, count, iso);

            for (int j = 0; j < count; ++j)
            {
                int index = indices[j];
                points[index] = points[index].Normalize(zs[j]);
            }
        }

        public abstract ECPoint Infinity { get; }

        public virtual IFiniteField Field
        {
            get { return m_field; }
        }

        public virtual ECFieldElement A
        {
            get { return m_a; }
        }

        public virtual ECFieldElement B
        {
            get { return m_b; }
        }

        public virtual BigInteger Order
        {
            get { return m_order; }
        }

        public virtual BigInteger Cofactor
        {
            get { return m_cofactor; }
        }

        public virtual int CoordinateSystem
        {
            get { return m_coord; }
        }

        protected virtual void CheckPoint(ECPoint point)
        {
            if (null == point || (this != point.Curve))
                throw new ArgumentException("must be non-null and on this curve", "point");
        }

        protected virtual void CheckPoints(ECPoint[] points)
        {
            CheckPoints(points, 0, points.Length);
        }

        protected virtual void CheckPoints(ECPoint[] points, int off, int len)
        {
            if (points == null)
                throw new ArgumentNullException("points");
            if (off < 0 || len < 0 || (off > (points.Length - len)))
                throw new ArgumentException("invalid range specified", "points");

            for (int i = 0; i < len; ++i)
            {
                ECPoint point = points[off + i];
                if (null != point && this != point.Curve)
                    throw new ArgumentException("entries must be null or on this curve", "points");
            }
        }

        public virtual bool Equals(ECCurve other)
        {
            if (this == other)
                return true;
            if (null == other)
                return false;
            return Field.Equals(other.Field)
                && A.ToBigInteger().Equals(other.A.ToBigInteger())
                && B.ToBigInteger().Equals(other.B.ToBigInteger());
        }

        public override bool Equals(object obj) 
        {
            return Equals(obj as ECCurve);
        }

        public override int GetHashCode()
        {
            return Field.GetHashCode()
                ^ Integers.RotateLeft(A.ToBigInteger().GetHashCode(), 8)
                ^ Integers.RotateLeft(B.ToBigInteger().GetHashCode(), 16);
        }

        protected abstract ECPoint DecompressPoint(int yTilde, BigInteger X1);

        public virtual ECEndomorphism GetEndomorphism()
        {
            return m_endomorphism;
        }

        /**
         * Sets the default <code>ECMultiplier</code>, unless already set. 
         */
        public virtual ECMultiplier GetMultiplier()
        {
            lock (this)
            {
                if (this.m_multiplier == null)
                {
                    this.m_multiplier = CreateDefaultMultiplier();
                }
                return this.m_multiplier;
            }
        }

        /**
         * Decode a point on this curve from its ASN.1 encoding. The different
         * encodings are taken account of, including point compression for
         * <code>F<sub>p</sub></code> (X9.62 s 4.2.1 pg 17).
         * @return The decoded point.
         */
        public virtual ECPoint DecodePoint(byte[] encoded)
        {
            ECPoint p = null;
            int expectedLength = (FieldSize + 7) / 8;

            byte type = encoded[0];
            switch (type)
            {
                case 0x00: // infinity
                {
                    if (encoded.Length != 1)
                        throw new ArgumentException("Incorrect length for infinity encoding", "encoded");

                    p = Infinity;
                    break;
                }

                case 0x02: // compressed
                case 0x03: // compressed
                {
                    if (encoded.Length != (expectedLength + 1))
                        throw new ArgumentException("Incorrect length for compressed encoding", "encoded");

                    int yTilde = type & 1;
                    BigInteger X = new BigInteger(1, encoded, 1, expectedLength);

                    p = DecompressPoint(yTilde, X);
                    if (!p.SatisfiesCofactor())
                        throw new ArgumentException("Invalid point");

                    break;
                }

                case 0x04: // uncompressed
                {
                    if (encoded.Length != (2 * expectedLength + 1))
                        throw new ArgumentException("Incorrect length for uncompressed encoding", "encoded");

                    BigInteger X = new BigInteger(1, encoded, 1, expectedLength);
                    BigInteger Y = new BigInteger(1, encoded, 1 + expectedLength, expectedLength);

                    p = ValidatePoint(X, Y);
                    break;
                }

                case 0x06: // hybrid
                case 0x07: // hybrid
                {
                    if (encoded.Length != (2 * expectedLength + 1))
                        throw new ArgumentException("Incorrect length for hybrid encoding", "encoded");

                    BigInteger X = new BigInteger(1, encoded, 1, expectedLength);
                    BigInteger Y = new BigInteger(1, encoded, 1 + expectedLength, expectedLength);

                    if (Y.TestBit(0) != (type == 0x07))
                        throw new ArgumentException("Inconsistent Y coordinate in hybrid encoding", "encoded");

                    p = ValidatePoint(X, Y);
                    break;
                }

                default:
                    throw new FormatException("Invalid point encoding " + type);
            }

            if (type != 0x00 && p.IsInfinity)
                throw new ArgumentException("Invalid infinity encoding", "encoded");

            return p;
        }
    }

    public abstract class AbstractFpCurve
        : ECCurve
    {
        protected AbstractFpCurve(BigInteger q)
            : base(FiniteFields.GetPrimeField(q))
        {
        }

        public override bool IsValidFieldElement(BigInteger x)
        {
            return x != null && x.SignValue >= 0 && x.CompareTo(Field.Characteristic) < 0;
        }

        protected override ECPoint DecompressPoint(int yTilde, BigInteger X1)
        {
            ECFieldElement x = FromBigInteger(X1);
            ECFieldElement rhs = x.Square().Add(A).Multiply(x).Add(B);
            ECFieldElement y = rhs.Sqrt();

            /*
             * If y is not a square, then we haven't got a point on the curve
             */
            if (y == null)
                throw new ArgumentException("Invalid point compression");

            if (y.TestBitZero() != (yTilde == 1))
            {
                // Use the other root
                y = y.Negate();
            }

            return CreateRawPoint(x, y, true);
        }
    }

    /**
     * Elliptic curve over Fp
     */
    public class FpCurve
        : AbstractFpCurve
    {
        private const int FP_DEFAULT_COORDS = COORD_JACOBIAN_MODIFIED;

        protected readonly BigInteger m_q, m_r;
        protected readonly FpPoint m_infinity;

        public FpCurve(BigInteger q, BigInteger a, BigInteger b)
            : this(q, a, b, null, null)
        {
        }

        public FpCurve(BigInteger q, BigInteger a, BigInteger b, BigInteger order, BigInteger cofactor)
            : base(q)
        {
            this.m_q = q;
            this.m_r = FpFieldElement.CalculateResidue(q);
            this.m_infinity = new FpPoint(this, null, null);

            this.m_a = FromBigInteger(a);
            this.m_b = FromBigInteger(b);
            this.m_order = order;
            this.m_cofactor = cofactor;
            this.m_coord = FP_DEFAULT_COORDS;
        }

        protected FpCurve(BigInteger q, BigInteger r, ECFieldElement a, ECFieldElement b)
            : this(q, r, a, b, null, null)
        {
        }

        protected FpCurve(BigInteger q, BigInteger r, ECFieldElement a, ECFieldElement b, BigInteger order, BigInteger cofactor)
            : base(q)
        {
            this.m_q = q;
            this.m_r = r;
            this.m_infinity = new FpPoint(this, null, null);

            this.m_a = a;
            this.m_b = b;
            this.m_order = order;
            this.m_cofactor = cofactor;
            this.m_coord = FP_DEFAULT_COORDS;
        }

        protected override ECCurve CloneCurve()
        {
            return new FpCurve(m_q, m_r, m_a, m_b, m_order, m_cofactor);
        }

        public override bool SupportsCoordinateSystem(int coord)
        {
            switch (coord)
            {
                case COORD_AFFINE:
                case COORD_HOMOGENEOUS:
                case COORD_JACOBIAN:
                case COORD_JACOBIAN_MODIFIED:
                    return true;
                default:
                    return false;
            }
        }

        public virtual BigInteger Q
        {
            get { return m_q; }
        }

        public override ECPoint Infinity
        {
            get { return m_infinity; }
        }

        public override int FieldSize
        {
            get { return m_q.BitLength; }
        }

        public override ECFieldElement FromBigInteger(BigInteger x)
        {
            return new FpFieldElement(this.m_q, this.m_r, x);
        }

        protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, bool withCompression)
        {
            return new FpPoint(this, x, y, withCompression);
        }

        protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
        {
            return new FpPoint(this, x, y, zs, withCompression);
        }

        public override ECPoint ImportPoint(ECPoint p)
        {
            if (this != p.Curve && this.CoordinateSystem == COORD_JACOBIAN && !p.IsInfinity)
            {
                switch (p.Curve.CoordinateSystem)
                {
                    case COORD_JACOBIAN:
                    case COORD_JACOBIAN_CHUDNOVSKY:
                    case COORD_JACOBIAN_MODIFIED:
                        return new FpPoint(this,
                            FromBigInteger(p.RawXCoord.ToBigInteger()),
                            FromBigInteger(p.RawYCoord.ToBigInteger()),
                            new ECFieldElement[] { FromBigInteger(p.GetZCoord(0).ToBigInteger()) },
                            p.IsCompressed);
                    default:
                        break;
                }
            }

            return base.ImportPoint(p);
        }
    }

    public abstract class AbstractF2mCurve
        : ECCurve
    {
        public static BigInteger Inverse(int m, int[] ks, BigInteger x)
        {
            return new LongArray(x).ModInverse(m, ks).ToBigInteger();
        }

        /**
         * The auxiliary values <code>s<sub>0</sub></code> and
         * <code>s<sub>1</sub></code> used for partial modular reduction for
         * Koblitz curves.
         */
        private BigInteger[] si = null;

        private static IFiniteField BuildField(int m, int k1, int k2, int k3)
        {
            if (k1 == 0)
            {
                throw new ArgumentException("k1 must be > 0");
            }

            if (k2 == 0)
            {
                if (k3 != 0)
                {
                    throw new ArgumentException("k3 must be 0 if k2 == 0");
                }

                return FiniteFields.GetBinaryExtensionField(new int[]{ 0, k1, m });
            }

            if (k2 <= k1)
            {
                throw new ArgumentException("k2 must be > k1");
            }

            if (k3 <= k2)
            {
                throw new ArgumentException("k3 must be > k2");
            }

            return FiniteFields.GetBinaryExtensionField(new int[]{ 0, k1, k2, k3, m });
        }

        protected AbstractF2mCurve(int m, int k1, int k2, int k3)
            : base(BuildField(m, k1, k2, k3))
        {
        }

        public override bool IsValidFieldElement(BigInteger x)
        {
            return x != null && x.SignValue >= 0 && x.BitLength <= FieldSize;
        }

        [Obsolete("Per-point compression property will be removed")]
        public override ECPoint CreatePoint(BigInteger x, BigInteger y, bool withCompression)
        {
            ECFieldElement X = FromBigInteger(x), Y = FromBigInteger(y);

            switch (this.CoordinateSystem)
            {
                case COORD_LAMBDA_AFFINE:
                case COORD_LAMBDA_PROJECTIVE:
                {
                    if (X.IsZero)
                    {
                        if (!Y.Square().Equals(B))
                            throw new ArgumentException();
                    }
                    else
                    {
                        // Y becomes Lambda (X + Y/X) here
                        Y = Y.Divide(X).Add(X);
                    }
                    break;
                }
                default:
                {
                    break;
                }
            }

            return CreateRawPoint(X, Y, withCompression);
        }

        protected override ECPoint DecompressPoint(int yTilde, BigInteger X1)
        {
            ECFieldElement xp = FromBigInteger(X1), yp = null;
            if (xp.IsZero)
            {
                yp = B.Sqrt();
            }
            else
            {
                ECFieldElement beta = xp.Square().Invert().Multiply(B).Add(A).Add(xp);
                ECFieldElement z = SolveQuadradicEquation(beta);

                if (z != null)
                {
                    if (z.TestBitZero() != (yTilde == 1))
                    {
                        z = z.AddOne();
                    }

                    switch (this.CoordinateSystem)
                    {
                        case COORD_LAMBDA_AFFINE:
                        case COORD_LAMBDA_PROJECTIVE:
                        {
                            yp = z.Add(xp);
                            break;
                        }
                        default:
                        {
                            yp = z.Multiply(xp);
                            break;
                        }
                    }
                }
            }

            if (yp == null)
                throw new ArgumentException("Invalid point compression");

            return CreateRawPoint(xp, yp, true);
        }

        /**
         * Solves a quadratic equation <code>z<sup>2</sup> + z = beta</code>(X9.62
         * D.1.6) The other solution is <code>z + 1</code>.
         *
         * @param beta
         *            The value to solve the qradratic equation for.
         * @return the solution for <code>z<sup>2</sup> + z = beta</code> or
         *         <code>null</code> if no solution exists.
         */
        private ECFieldElement SolveQuadradicEquation(ECFieldElement beta)
        {
            if (beta.IsZero)
                return beta;

            ECFieldElement gamma, z, zeroElement = FromBigInteger(BigInteger.Zero);

            int m = FieldSize;
            do
            {
                ECFieldElement t = FromBigInteger(BigInteger.Arbitrary(m));
                z = zeroElement;
                ECFieldElement w = beta;
                for (int i = 1; i < m; i++)
                {
                    ECFieldElement w2 = w.Square();
                    z = z.Square().Add(w2.Multiply(t));
                    w = w2.Add(beta);
                }
                if (!w.IsZero)
                {
                    return null;
                }
                gamma = z.Square().Add(z);
            }
            while (gamma.IsZero);

            return z;
        }

        /**
         * @return the auxiliary values <code>s<sub>0</sub></code> and
         * <code>s<sub>1</sub></code> used for partial modular reduction for
         * Koblitz curves.
         */
        internal virtual BigInteger[] GetSi()
        {
            if (si == null)
            {
                lock (this)
                {
                    if (si == null)
                    {
                        si = Tnaf.GetSi(this);
                    }
                }
            }
            return si;
        }

        /**
         * Returns true if this is a Koblitz curve (ABC curve).
         * @return true if this is a Koblitz curve (ABC curve), false otherwise
         */
        public virtual bool IsKoblitz
        {
            get
            {
                return m_order != null && m_cofactor != null && m_b.IsOne && (m_a.IsZero || m_a.IsOne);
            }
        }
    }

    /**
     * Elliptic curves over F2m. The Weierstrass equation is given by
     * <code>y<sup>2</sup> + xy = x<sup>3</sup> + ax<sup>2</sup> + b</code>.
     */
    public class F2mCurve
        : AbstractF2mCurve
    {
        private const int F2M_DEFAULT_COORDS = COORD_LAMBDA_PROJECTIVE;

        /**
         * The exponent <code>m</code> of <code>F<sub>2<sup>m</sup></sub></code>.
         */
        private readonly int m;

        /**
         * TPB: The integer <code>k</code> where <code>x<sup>m</sup> +
         * x<sup>k</sup> + 1</code> represents the reduction polynomial
         * <code>f(z)</code>.<br/>
         * PPB: The integer <code>k1</code> where <code>x<sup>m</sup> +
         * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
         * represents the reduction polynomial <code>f(z)</code>.<br/>
         */
        private readonly int k1;

        /**
         * TPB: Always set to <code>0</code><br/>
         * PPB: The integer <code>k2</code> where <code>x<sup>m</sup> +
         * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
         * represents the reduction polynomial <code>f(z)</code>.<br/>
         */
        private readonly int k2;

        /**
         * TPB: Always set to <code>0</code><br/>
         * PPB: The integer <code>k3</code> where <code>x<sup>m</sup> +
         * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
         * represents the reduction polynomial <code>f(z)</code>.<br/>
         */
        private readonly int k3;

        /**
         * The point at infinity on this curve.
         */
        protected readonly F2mPoint m_infinity;

        /**
         * Constructor for Trinomial Polynomial Basis (TPB).
         * @param m  The exponent <code>m</code> of
         * <code>F<sub>2<sup>m</sup></sub></code>.
         * @param k The integer <code>k</code> where <code>x<sup>m</sup> +
         * x<sup>k</sup> + 1</code> represents the reduction
         * polynomial <code>f(z)</code>.
         * @param a The coefficient <code>a</code> in the Weierstrass equation
         * for non-supersingular elliptic curves over
         * <code>F<sub>2<sup>m</sup></sub></code>.
         * @param b The coefficient <code>b</code> in the Weierstrass equation
         * for non-supersingular elliptic curves over
         * <code>F<sub>2<sup>m</sup></sub></code>.
         */
        public F2mCurve(
            int			m,
            int			k,
            BigInteger	a,
            BigInteger	b)
            : this(m, k, 0, 0, a, b, null, null)
        {
        }

        /**
         * Constructor for Trinomial Polynomial Basis (TPB).
         * @param m  The exponent <code>m</code> of
         * <code>F<sub>2<sup>m</sup></sub></code>.
         * @param k The integer <code>k</code> where <code>x<sup>m</sup> +
         * x<sup>k</sup> + 1</code> represents the reduction
         * polynomial <code>f(z)</code>.
         * @param a The coefficient <code>a</code> in the Weierstrass equation
         * for non-supersingular elliptic curves over
         * <code>F<sub>2<sup>m</sup></sub></code>.
         * @param b The coefficient <code>b</code> in the Weierstrass equation
         * for non-supersingular elliptic curves over
         * <code>F<sub>2<sup>m</sup></sub></code>.
         * @param order The order of the main subgroup of the elliptic curve.
         * @param cofactor The cofactor of the elliptic curve, i.e.
         * <code>#E<sub>a</sub>(F<sub>2<sup>m</sup></sub>) = h * n</code>.
         */
        public F2mCurve(
            int			m, 
            int			k, 
            BigInteger	a, 
            BigInteger	b,
            BigInteger	order,
            BigInteger	cofactor)
            : this(m, k, 0, 0, a, b, order, cofactor)
        {
        }

        /**
         * Constructor for Pentanomial Polynomial Basis (PPB).
         * @param m  The exponent <code>m</code> of
         * <code>F<sub>2<sup>m</sup></sub></code>.
         * @param k1 The integer <code>k1</code> where <code>x<sup>m</sup> +
         * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
         * represents the reduction polynomial <code>f(z)</code>.
         * @param k2 The integer <code>k2</code> where <code>x<sup>m</sup> +
         * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
         * represents the reduction polynomial <code>f(z)</code>.
         * @param k3 The integer <code>k3</code> where <code>x<sup>m</sup> +
         * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
         * represents the reduction polynomial <code>f(z)</code>.
         * @param a The coefficient <code>a</code> in the Weierstrass equation
         * for non-supersingular elliptic curves over
         * <code>F<sub>2<sup>m</sup></sub></code>.
         * @param b The coefficient <code>b</code> in the Weierstrass equation
         * for non-supersingular elliptic curves over
         * <code>F<sub>2<sup>m</sup></sub></code>.
         */
        public F2mCurve(
            int			m,
            int			k1,
            int			k2,
            int			k3,
            BigInteger	a,
            BigInteger	b)
            : this(m, k1, k2, k3, a, b, null, null)
        {
        }

        /**
         * Constructor for Pentanomial Polynomial Basis (PPB).
         * @param m  The exponent <code>m</code> of
         * <code>F<sub>2<sup>m</sup></sub></code>.
         * @param k1 The integer <code>k1</code> where <code>x<sup>m</sup> +
         * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
         * represents the reduction polynomial <code>f(z)</code>.
         * @param k2 The integer <code>k2</code> where <code>x<sup>m</sup> +
         * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
         * represents the reduction polynomial <code>f(z)</code>.
         * @param k3 The integer <code>k3</code> where <code>x<sup>m</sup> +
         * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
         * represents the reduction polynomial <code>f(z)</code>.
         * @param a The coefficient <code>a</code> in the Weierstrass equation
         * for non-supersingular elliptic curves over
         * <code>F<sub>2<sup>m</sup></sub></code>.
         * @param b The coefficient <code>b</code> in the Weierstrass equation
         * for non-supersingular elliptic curves over
         * <code>F<sub>2<sup>m</sup></sub></code>.
         * @param order The order of the main subgroup of the elliptic curve.
         * @param cofactor The cofactor of the elliptic curve, i.e.
         * <code>#E<sub>a</sub>(F<sub>2<sup>m</sup></sub>) = h * n</code>.
         */
        public F2mCurve(
            int			m, 
            int			k1, 
            int			k2, 
            int			k3,
            BigInteger	a, 
            BigInteger	b,
            BigInteger	order,
            BigInteger	cofactor)
            : base(m, k1, k2, k3)
        {
            this.m = m;
            this.k1 = k1;
            this.k2 = k2;
            this.k3 = k3;
            this.m_order = order;
            this.m_cofactor = cofactor;
            this.m_infinity = new F2mPoint(this, null, null);

            if (k1 == 0)
                throw new ArgumentException("k1 must be > 0");

            if (k2 == 0)
            {
                if (k3 != 0)
                    throw new ArgumentException("k3 must be 0 if k2 == 0");
            }
            else
            {
                if (k2 <= k1)
                    throw new ArgumentException("k2 must be > k1");

                if (k3 <= k2)
                    throw new ArgumentException("k3 must be > k2");
            }

            this.m_a = FromBigInteger(a);
            this.m_b = FromBigInteger(b);
            this.m_coord = F2M_DEFAULT_COORDS;
        }

        protected F2mCurve(int m, int k1, int k2, int k3, ECFieldElement a, ECFieldElement b, BigInteger order, BigInteger cofactor)
            : base(m, k1, k2, k3)
        {
            this.m = m;
            this.k1 = k1;
            this.k2 = k2;
            this.k3 = k3;
            this.m_order = order;
            this.m_cofactor = cofactor;

            this.m_infinity = new F2mPoint(this, null, null);
            this.m_a = a;
            this.m_b = b;
            this.m_coord = F2M_DEFAULT_COORDS;
        }

        protected override ECCurve CloneCurve()
        {
            return new F2mCurve(m, k1, k2, k3, m_a, m_b, m_order, m_cofactor);
        }

        public override bool SupportsCoordinateSystem(int coord)
        {
            switch (coord)
            {
                case COORD_AFFINE:
                case COORD_HOMOGENEOUS:
                case COORD_LAMBDA_PROJECTIVE:
                    return true;
                default:
                    return false;
            }
        }

        protected override ECMultiplier CreateDefaultMultiplier()
        {
            if (IsKoblitz)
            {
                return new WTauNafMultiplier();
            }

            return base.CreateDefaultMultiplier();
        }

        public override int FieldSize
        {
            get { return m; }
        }

        public override ECFieldElement FromBigInteger(BigInteger x)
        {
            return new F2mFieldElement(this.m, this.k1, this.k2, this.k3, x);
        }

        protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, bool withCompression)
        {
            return new F2mPoint(this, x, y, withCompression);
        }

        protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
        {
            return new F2mPoint(this, x, y, zs, withCompression);
        }

        public override ECPoint Infinity
        {
            get { return m_infinity; }
        }

        public int M
        {
            get { return m; }
        }

        /**
         * Return true if curve uses a Trinomial basis.
         *
         * @return true if curve Trinomial, false otherwise.
         */
        public bool IsTrinomial()
        {
            return k2 == 0 && k3 == 0;
        }

        public int K1
        {
            get { return k1; }
        }

        public int K2
        {
            get { return k2; }
        }

        public int K3
        {
            get { return k3; }
        }

        [Obsolete("Use 'Order' property instead")]
        public BigInteger N
        {
            get { return m_order; }
        }

        [Obsolete("Use 'Cofactor' property instead")]
        public BigInteger H
        {
            get { return m_cofactor; }
        }
    }
}