GCMBlockCipher.cs
15.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
using System;
using Org.BouncyCastle.Crypto.Macs;
using Org.BouncyCastle.Crypto.Modes.Gcm;
using Org.BouncyCastle.Crypto.Parameters;
using Org.BouncyCastle.Crypto.Utilities;
using Org.BouncyCastle.Utilities;
namespace Org.BouncyCastle.Crypto.Modes
{
/// <summary>
/// Implements the Galois/Counter mode (GCM) detailed in
/// NIST Special Publication 800-38D.
/// </summary>
public class GcmBlockCipher
: IAeadBlockCipher
{
private const int BlockSize = 16;
private readonly IBlockCipher cipher;
private readonly IGcmMultiplier multiplier;
private IGcmExponentiator exp;
// These fields are set by Init and not modified by processing
private bool forEncryption;
private int macSize;
private byte[] nonce;
private byte[] initialAssociatedText;
private byte[] H;
private byte[] J0;
// These fields are modified during processing
private byte[] bufBlock;
private byte[] macBlock;
private byte[] S, S_at, S_atPre;
private byte[] counter;
private int bufOff;
private ulong totalLength;
private byte[] atBlock;
private int atBlockPos;
private ulong atLength;
private ulong atLengthPre;
public GcmBlockCipher(
IBlockCipher c)
: this(c, null)
{
}
public GcmBlockCipher(
IBlockCipher c,
IGcmMultiplier m)
{
if (c.GetBlockSize() != BlockSize)
throw new ArgumentException("cipher required with a block size of " + BlockSize + ".");
if (m == null)
{
// TODO Consider a static property specifying default multiplier
m = new Tables8kGcmMultiplier();
}
this.cipher = c;
this.multiplier = m;
}
public virtual string AlgorithmName
{
get { return cipher.AlgorithmName + "/GCM"; }
}
public IBlockCipher GetUnderlyingCipher()
{
return cipher;
}
public virtual int GetBlockSize()
{
return BlockSize;
}
/// <remarks>
/// MAC sizes from 32 bits to 128 bits (must be a multiple of 8) are supported. The default is 128 bits.
/// Sizes less than 96 are not recommended, but are supported for specialized applications.
/// </remarks>
public virtual void Init(
bool forEncryption,
ICipherParameters parameters)
{
this.forEncryption = forEncryption;
this.macBlock = null;
KeyParameter keyParam;
if (parameters is AeadParameters)
{
AeadParameters param = (AeadParameters)parameters;
nonce = param.GetNonce();
initialAssociatedText = param.GetAssociatedText();
int macSizeBits = param.MacSize;
if (macSizeBits < 32 || macSizeBits > 128 || macSizeBits % 8 != 0)
{
throw new ArgumentException("Invalid value for MAC size: " + macSizeBits);
}
macSize = macSizeBits / 8;
keyParam = param.Key;
}
else if (parameters is ParametersWithIV)
{
ParametersWithIV param = (ParametersWithIV)parameters;
nonce = param.GetIV();
initialAssociatedText = null;
macSize = 16;
keyParam = (KeyParameter)param.Parameters;
}
else
{
throw new ArgumentException("invalid parameters passed to GCM");
}
int bufLength = forEncryption ? BlockSize : (BlockSize + macSize);
this.bufBlock = new byte[bufLength];
if (nonce == null || nonce.Length < 1)
{
throw new ArgumentException("IV must be at least 1 byte");
}
// TODO Restrict macSize to 16 if nonce length not 12?
// Cipher always used in forward mode
// if keyParam is null we're reusing the last key.
if (keyParam != null)
{
cipher.Init(true, keyParam);
this.H = new byte[BlockSize];
cipher.ProcessBlock(H, 0, H, 0);
// if keyParam is null we're reusing the last key and the multiplier doesn't need re-init
multiplier.Init(H);
exp = null;
}
else if (this.H == null)
{
throw new ArgumentException("Key must be specified in initial init");
}
this.J0 = new byte[BlockSize];
if (nonce.Length == 12)
{
Array.Copy(nonce, 0, J0, 0, nonce.Length);
this.J0[BlockSize - 1] = 0x01;
}
else
{
gHASH(J0, nonce, nonce.Length);
byte[] X = new byte[BlockSize];
Pack.UInt64_To_BE((ulong)nonce.Length * 8UL, X, 8);
gHASHBlock(J0, X);
}
this.S = new byte[BlockSize];
this.S_at = new byte[BlockSize];
this.S_atPre = new byte[BlockSize];
this.atBlock = new byte[BlockSize];
this.atBlockPos = 0;
this.atLength = 0;
this.atLengthPre = 0;
this.counter = Arrays.Clone(J0);
this.bufOff = 0;
this.totalLength = 0;
if (initialAssociatedText != null)
{
ProcessAadBytes(initialAssociatedText, 0, initialAssociatedText.Length);
}
}
public virtual byte[] GetMac()
{
return Arrays.Clone(macBlock);
}
public virtual int GetOutputSize(
int len)
{
int totalData = len + bufOff;
if (forEncryption)
{
return totalData + macSize;
}
return totalData < macSize ? 0 : totalData - macSize;
}
public virtual int GetUpdateOutputSize(
int len)
{
int totalData = len + bufOff;
if (!forEncryption)
{
if (totalData < macSize)
{
return 0;
}
totalData -= macSize;
}
return totalData - totalData % BlockSize;
}
public virtual void ProcessAadByte(byte input)
{
atBlock[atBlockPos] = input;
if (++atBlockPos == BlockSize)
{
// Hash each block as it fills
gHASHBlock(S_at, atBlock);
atBlockPos = 0;
atLength += BlockSize;
}
}
public virtual void ProcessAadBytes(byte[] inBytes, int inOff, int len)
{
for (int i = 0; i < len; ++i)
{
atBlock[atBlockPos] = inBytes[inOff + i];
if (++atBlockPos == BlockSize)
{
// Hash each block as it fills
gHASHBlock(S_at, atBlock);
atBlockPos = 0;
atLength += BlockSize;
}
}
}
private void InitCipher()
{
if (atLength > 0)
{
Array.Copy(S_at, 0, S_atPre, 0, BlockSize);
atLengthPre = atLength;
}
// Finish hash for partial AAD block
if (atBlockPos > 0)
{
gHASHPartial(S_atPre, atBlock, 0, atBlockPos);
atLengthPre += (uint)atBlockPos;
}
if (atLengthPre > 0)
{
Array.Copy(S_atPre, 0, S, 0, BlockSize);
}
}
public virtual int ProcessByte(
byte input,
byte[] output,
int outOff)
{
bufBlock[bufOff] = input;
if (++bufOff == bufBlock.Length)
{
OutputBlock(output, outOff);
return BlockSize;
}
return 0;
}
public virtual int ProcessBytes(
byte[] input,
int inOff,
int len,
byte[] output,
int outOff)
{
if (input.Length < (inOff + len))
throw new DataLengthException("Input buffer too short");
int resultLen = 0;
for (int i = 0; i < len; ++i)
{
bufBlock[bufOff] = input[inOff + i];
if (++bufOff == bufBlock.Length)
{
OutputBlock(output, outOff + resultLen);
resultLen += BlockSize;
}
}
return resultLen;
}
private void OutputBlock(byte[] output, int offset)
{
Check.OutputLength(output, offset, BlockSize, "Output buffer too short");
if (totalLength == 0)
{
InitCipher();
}
gCTRBlock(bufBlock, output, offset);
if (forEncryption)
{
bufOff = 0;
}
else
{
Array.Copy(bufBlock, BlockSize, bufBlock, 0, macSize);
bufOff = macSize;
}
}
public int DoFinal(byte[] output, int outOff)
{
if (totalLength == 0)
{
InitCipher();
}
int extra = bufOff;
if (forEncryption)
{
Check.OutputLength(output, outOff, extra + macSize, "Output buffer too short");
}
else
{
if (extra < macSize)
throw new InvalidCipherTextException("data too short");
extra -= macSize;
Check.OutputLength(output, outOff, extra, "Output buffer too short");
}
if (extra > 0)
{
gCTRPartial(bufBlock, 0, extra, output, outOff);
}
atLength += (uint)atBlockPos;
if (atLength > atLengthPre)
{
/*
* Some AAD was sent after the cipher started. We determine the difference b/w the hash value
* we actually used when the cipher started (S_atPre) and the final hash value calculated (S_at).
* Then we carry this difference forward by multiplying by H^c, where c is the number of (full or
* partial) cipher-text blocks produced, and adjust the current hash.
*/
// Finish hash for partial AAD block
if (atBlockPos > 0)
{
gHASHPartial(S_at, atBlock, 0, atBlockPos);
}
// Find the difference between the AAD hashes
if (atLengthPre > 0)
{
GcmUtilities.Xor(S_at, S_atPre);
}
// Number of cipher-text blocks produced
long c = (long)(((totalLength * 8) + 127) >> 7);
// Calculate the adjustment factor
byte[] H_c = new byte[16];
if (exp == null)
{
exp = new Tables1kGcmExponentiator();
exp.Init(H);
}
exp.ExponentiateX(c, H_c);
// Carry the difference forward
GcmUtilities.Multiply(S_at, H_c);
// Adjust the current hash
GcmUtilities.Xor(S, S_at);
}
// Final gHASH
byte[] X = new byte[BlockSize];
Pack.UInt64_To_BE(atLength * 8UL, X, 0);
Pack.UInt64_To_BE(totalLength * 8UL, X, 8);
gHASHBlock(S, X);
// T = MSBt(GCTRk(J0,S))
byte[] tag = new byte[BlockSize];
cipher.ProcessBlock(J0, 0, tag, 0);
GcmUtilities.Xor(tag, S);
int resultLen = extra;
// We place into macBlock our calculated value for T
this.macBlock = new byte[macSize];
Array.Copy(tag, 0, macBlock, 0, macSize);
if (forEncryption)
{
// Append T to the message
Array.Copy(macBlock, 0, output, outOff + bufOff, macSize);
resultLen += macSize;
}
else
{
// Retrieve the T value from the message and compare to calculated one
byte[] msgMac = new byte[macSize];
Array.Copy(bufBlock, extra, msgMac, 0, macSize);
if (!Arrays.ConstantTimeAreEqual(this.macBlock, msgMac))
throw new InvalidCipherTextException("mac check in GCM failed");
}
Reset(false);
return resultLen;
}
public virtual void Reset()
{
Reset(true);
}
private void Reset(
bool clearMac)
{
cipher.Reset();
S = new byte[BlockSize];
S_at = new byte[BlockSize];
S_atPre = new byte[BlockSize];
atBlock = new byte[BlockSize];
atBlockPos = 0;
atLength = 0;
atLengthPre = 0;
counter = Arrays.Clone(J0);
bufOff = 0;
totalLength = 0;
if (bufBlock != null)
{
Arrays.Fill(bufBlock, 0);
}
if (clearMac)
{
macBlock = null;
}
if (initialAssociatedText != null)
{
ProcessAadBytes(initialAssociatedText, 0, initialAssociatedText.Length);
}
}
private void gCTRBlock(byte[] block, byte[] output, int outOff)
{
byte[] tmp = GetNextCounterBlock();
GcmUtilities.Xor(tmp, block);
Array.Copy(tmp, 0, output, outOff, BlockSize);
gHASHBlock(S, forEncryption ? tmp : block);
totalLength += BlockSize;
}
private void gCTRPartial(byte[] buf, int off, int len, byte[] output, int outOff)
{
byte[] tmp = GetNextCounterBlock();
GcmUtilities.Xor(tmp, buf, off, len);
Array.Copy(tmp, 0, output, outOff, len);
gHASHPartial(S, forEncryption ? tmp : buf, 0, len);
totalLength += (uint)len;
}
private void gHASH(byte[] Y, byte[] b, int len)
{
for (int pos = 0; pos < len; pos += BlockSize)
{
int num = System.Math.Min(len - pos, BlockSize);
gHASHPartial(Y, b, pos, num);
}
}
private void gHASHBlock(byte[] Y, byte[] b)
{
GcmUtilities.Xor(Y, b);
multiplier.MultiplyH(Y);
}
private void gHASHPartial(byte[] Y, byte[] b, int off, int len)
{
GcmUtilities.Xor(Y, b, off, len);
multiplier.MultiplyH(Y);
}
private byte[] GetNextCounterBlock()
{
uint c = 1;
c += counter[15]; counter[15] = (byte)c; c >>= 8;
c += counter[14]; counter[14] = (byte)c; c >>= 8;
c += counter[13]; counter[13] = (byte)c; c >>= 8;
c += counter[12]; counter[12] = (byte)c;
byte[] tmp = new byte[BlockSize];
// TODO Sure would be nice if ciphers could operate on int[]
cipher.ProcessBlock(counter, 0, tmp, 0);
return tmp;
}
}
}