Tnaf.cs 29 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
using System;

namespace Org.BouncyCastle.Math.EC.Abc
{
    /**
    * Class holding methods for point multiplication based on the window
    * τ-adic nonadjacent form (WTNAF). The algorithms are based on the
    * paper "Improved Algorithms for Arithmetic on Anomalous Binary Curves"
    * by Jerome A. Solinas. The paper first appeared in the Proceedings of
    * Crypto 1997.
    */
    internal class Tnaf
    {
        private static readonly BigInteger MinusOne = BigInteger.One.Negate();
        private static readonly BigInteger MinusTwo = BigInteger.Two.Negate();
        private static readonly BigInteger MinusThree = BigInteger.Three.Negate();
        private static readonly BigInteger Four = BigInteger.ValueOf(4);

        /**
        * The window width of WTNAF. The standard value of 4 is slightly less
        * than optimal for running time, but keeps space requirements for
        * precomputation low. For typical curves, a value of 5 or 6 results in
        * a better running time. When changing this value, the
        * <code>&#945;<sub>u</sub></code>'s must be computed differently, see
        * e.g. "Guide to Elliptic Curve Cryptography", Darrel Hankerson,
        * Alfred Menezes, Scott Vanstone, Springer-Verlag New York Inc., 2004,
        * p. 121-122
        */
        public const sbyte Width = 4;

        /**
        * 2<sup>4</sup>
        */
        public const sbyte Pow2Width = 16;

        /**
        * The <code>&#945;<sub>u</sub></code>'s for <code>a=0</code> as an array
        * of <code>ZTauElement</code>s.
        */
        public static readonly ZTauElement[] Alpha0 =
        {
            null,
            new ZTauElement(BigInteger.One, BigInteger.Zero), null,
            new ZTauElement(MinusThree, MinusOne), null,
            new ZTauElement(MinusOne, MinusOne), null,
            new ZTauElement(BigInteger.One, MinusOne), null
        };

        /**
        * The <code>&#945;<sub>u</sub></code>'s for <code>a=0</code> as an array
        * of TNAFs.
        */
        public static readonly sbyte[][] Alpha0Tnaf =
        {
            null, new sbyte[]{1}, null, new sbyte[]{-1, 0, 1}, null, new sbyte[]{1, 0, 1}, null, new sbyte[]{-1, 0, 0, 1}
        };

        /**
        * The <code>&#945;<sub>u</sub></code>'s for <code>a=1</code> as an array
        * of <code>ZTauElement</code>s.
        */
        public static readonly ZTauElement[] Alpha1 =
        {
            null,
            new ZTauElement(BigInteger.One, BigInteger.Zero), null,
            new ZTauElement(MinusThree, BigInteger.One), null,
            new ZTauElement(MinusOne, BigInteger.One), null,
            new ZTauElement(BigInteger.One, BigInteger.One), null
        };

        /**
        * The <code>&#945;<sub>u</sub></code>'s for <code>a=1</code> as an array
        * of TNAFs.
        */
        public static readonly sbyte[][] Alpha1Tnaf =
        {
            null, new sbyte[]{1}, null, new sbyte[]{-1, 0, 1}, null, new sbyte[]{1, 0, 1}, null, new sbyte[]{-1, 0, 0, -1}
        };

        /**
        * Computes the norm of an element <code>&#955;</code> of
        * <code><b>Z</b>[&#964;]</code>.
        * @param mu The parameter <code>&#956;</code> of the elliptic curve.
        * @param lambda The element <code>&#955;</code> of
        * <code><b>Z</b>[&#964;]</code>.
        * @return The norm of <code>&#955;</code>.
        */
        public static BigInteger Norm(sbyte mu, ZTauElement lambda)
        {
            BigInteger norm;

            // s1 = u^2
            BigInteger s1 = lambda.u.Multiply(lambda.u);

            // s2 = u * v
            BigInteger s2 = lambda.u.Multiply(lambda.v);

            // s3 = 2 * v^2
            BigInteger s3 = lambda.v.Multiply(lambda.v).ShiftLeft(1);

            if (mu == 1)
            {
                norm = s1.Add(s2).Add(s3);
            }
            else if (mu == -1)
            {
                norm = s1.Subtract(s2).Add(s3);
            }
            else
            {
                throw new ArgumentException("mu must be 1 or -1");
            }

            return norm;
        }

        /**
        * Computes the norm of an element <code>&#955;</code> of
        * <code><b>R</b>[&#964;]</code>, where <code>&#955; = u + v&#964;</code>
        * and <code>u</code> and <code>u</code> are real numbers (elements of
        * <code><b>R</b></code>). 
        * @param mu The parameter <code>&#956;</code> of the elliptic curve.
        * @param u The real part of the element <code>&#955;</code> of
        * <code><b>R</b>[&#964;]</code>.
        * @param v The <code>&#964;</code>-adic part of the element
        * <code>&#955;</code> of <code><b>R</b>[&#964;]</code>.
        * @return The norm of <code>&#955;</code>.
        */
        public static SimpleBigDecimal Norm(sbyte mu, SimpleBigDecimal u, SimpleBigDecimal v)
        {
            SimpleBigDecimal norm;

            // s1 = u^2
            SimpleBigDecimal s1 = u.Multiply(u);

            // s2 = u * v
            SimpleBigDecimal s2 = u.Multiply(v);

            // s3 = 2 * v^2
            SimpleBigDecimal s3 = v.Multiply(v).ShiftLeft(1);

            if (mu == 1)
            {
                norm = s1.Add(s2).Add(s3);
            }
            else if (mu == -1)
            {
                norm = s1.Subtract(s2).Add(s3);
            }
            else
            {
                throw new ArgumentException("mu must be 1 or -1");
            }

            return norm;
        }

        /**
        * Rounds an element <code>&#955;</code> of <code><b>R</b>[&#964;]</code>
        * to an element of <code><b>Z</b>[&#964;]</code>, such that their difference
        * has minimal norm. <code>&#955;</code> is given as
        * <code>&#955; = &#955;<sub>0</sub> + &#955;<sub>1</sub>&#964;</code>.
        * @param lambda0 The component <code>&#955;<sub>0</sub></code>.
        * @param lambda1 The component <code>&#955;<sub>1</sub></code>.
        * @param mu The parameter <code>&#956;</code> of the elliptic curve. Must
        * equal 1 or -1.
        * @return The rounded element of <code><b>Z</b>[&#964;]</code>.
        * @throws ArgumentException if <code>lambda0</code> and
        * <code>lambda1</code> do not have same scale.
        */
        public static ZTauElement Round(SimpleBigDecimal lambda0,
            SimpleBigDecimal lambda1, sbyte mu)
        {
            int scale = lambda0.Scale;
            if (lambda1.Scale != scale)
                throw new ArgumentException("lambda0 and lambda1 do not have same scale");

            if (!((mu == 1) || (mu == -1)))
                throw new ArgumentException("mu must be 1 or -1");

            BigInteger f0 = lambda0.Round();
            BigInteger f1 = lambda1.Round();

            SimpleBigDecimal eta0 = lambda0.Subtract(f0);
            SimpleBigDecimal eta1 = lambda1.Subtract(f1);

            // eta = 2*eta0 + mu*eta1
            SimpleBigDecimal eta = eta0.Add(eta0);
            if (mu == 1)
            {
                eta = eta.Add(eta1);
            }
            else
            {
                // mu == -1
                eta = eta.Subtract(eta1);
            }

            // check1 = eta0 - 3*mu*eta1
            // check2 = eta0 + 4*mu*eta1
            SimpleBigDecimal threeEta1 = eta1.Add(eta1).Add(eta1);
            SimpleBigDecimal fourEta1 = threeEta1.Add(eta1);
            SimpleBigDecimal check1;
            SimpleBigDecimal check2;
            if (mu == 1)
            {
                check1 = eta0.Subtract(threeEta1);
                check2 = eta0.Add(fourEta1);
            }
            else
            {
                // mu == -1
                check1 = eta0.Add(threeEta1);
                check2 = eta0.Subtract(fourEta1);
            }

            sbyte h0 = 0;
            sbyte h1 = 0;

            // if eta >= 1
            if (eta.CompareTo(BigInteger.One) >= 0)
            {
                if (check1.CompareTo(MinusOne) < 0)
                {
                    h1 = mu;
                }
                else
                {
                    h0 = 1;
                }
            }
            else
            {
                // eta < 1
                if (check2.CompareTo(BigInteger.Two) >= 0)
                {
                    h1 = mu;
                }
            }

            // if eta < -1
            if (eta.CompareTo(MinusOne) < 0)
            {
                if (check1.CompareTo(BigInteger.One) >= 0)
                {
                    h1 = (sbyte)-mu;
                }
                else
                {
                    h0 = -1;
                }
            }
            else
            {
                // eta >= -1
                if (check2.CompareTo(MinusTwo) < 0)
                {
                    h1 = (sbyte)-mu;
                }
            }

            BigInteger q0 = f0.Add(BigInteger.ValueOf(h0));
            BigInteger q1 = f1.Add(BigInteger.ValueOf(h1));
            return new ZTauElement(q0, q1);
        }

        /**
        * Approximate division by <code>n</code>. For an integer
        * <code>k</code>, the value <code>&#955; = s k / n</code> is
        * computed to <code>c</code> bits of accuracy.
        * @param k The parameter <code>k</code>.
        * @param s The curve parameter <code>s<sub>0</sub></code> or
        * <code>s<sub>1</sub></code>.
        * @param vm The Lucas Sequence element <code>V<sub>m</sub></code>.
        * @param a The parameter <code>a</code> of the elliptic curve.
        * @param m The bit length of the finite field
        * <code><b>F</b><sub>m</sub></code>.
        * @param c The number of bits of accuracy, i.e. the scale of the returned
        * <code>SimpleBigDecimal</code>.
        * @return The value <code>&#955; = s k / n</code> computed to
        * <code>c</code> bits of accuracy.
        */
        public static SimpleBigDecimal ApproximateDivisionByN(BigInteger k,
            BigInteger s, BigInteger vm, sbyte a, int m, int c)
        {
            int _k = (m + 5)/2 + c;
            BigInteger ns = k.ShiftRight(m - _k - 2 + a);

            BigInteger gs = s.Multiply(ns);

            BigInteger hs = gs.ShiftRight(m);

            BigInteger js = vm.Multiply(hs);

            BigInteger gsPlusJs = gs.Add(js);
            BigInteger ls = gsPlusJs.ShiftRight(_k-c);
            if (gsPlusJs.TestBit(_k-c-1))
            {
                // round up
                ls = ls.Add(BigInteger.One);
            }

            return new SimpleBigDecimal(ls, c);
        }

        /**
        * Computes the <code>&#964;</code>-adic NAF (non-adjacent form) of an
        * element <code>&#955;</code> of <code><b>Z</b>[&#964;]</code>.
        * @param mu The parameter <code>&#956;</code> of the elliptic curve.
        * @param lambda The element <code>&#955;</code> of
        * <code><b>Z</b>[&#964;]</code>.
        * @return The <code>&#964;</code>-adic NAF of <code>&#955;</code>.
        */
        public static sbyte[] TauAdicNaf(sbyte mu, ZTauElement lambda)
        {
            if (!((mu == 1) || (mu == -1))) 
                throw new ArgumentException("mu must be 1 or -1");

            BigInteger norm = Norm(mu, lambda);

            // Ceiling of log2 of the norm 
            int log2Norm = norm.BitLength;

            // If length(TNAF) > 30, then length(TNAF) < log2Norm + 3.52
            int maxLength = log2Norm > 30 ? log2Norm + 4 : 34;

            // The array holding the TNAF
            sbyte[] u = new sbyte[maxLength];
            int i = 0;

            // The actual length of the TNAF
            int length = 0;

            BigInteger r0 = lambda.u;
            BigInteger r1 = lambda.v;

            while(!((r0.Equals(BigInteger.Zero)) && (r1.Equals(BigInteger.Zero))))
            {
                // If r0 is odd
                if (r0.TestBit(0)) 
                {
                    u[i] = (sbyte) BigInteger.Two.Subtract((r0.Subtract(r1.ShiftLeft(1))).Mod(Four)).IntValue;

                    // r0 = r0 - u[i]
                    if (u[i] == 1)
                    {
                        r0 = r0.ClearBit(0);
                    }
                    else
                    {
                        // u[i] == -1
                        r0 = r0.Add(BigInteger.One);
                    }
                    length = i;
                }
                else
                {
                    u[i] = 0;
                }

                BigInteger t = r0;
                BigInteger s = r0.ShiftRight(1);
                if (mu == 1) 
                {
                    r0 = r1.Add(s);
                }
                else
                {
                    // mu == -1
                    r0 = r1.Subtract(s);
                }

                r1 = t.ShiftRight(1).Negate();
                i++;
            }

            length++;

            // Reduce the TNAF array to its actual length
            sbyte[] tnaf = new sbyte[length];
            Array.Copy(u, 0, tnaf, 0, length);
            return tnaf;
        }

        /**
        * Applies the operation <code>&#964;()</code> to an
        * <code>AbstractF2mPoint</code>. 
        * @param p The AbstractF2mPoint to which <code>&#964;()</code> is applied.
        * @return <code>&#964;(p)</code>
        */
        public static AbstractF2mPoint Tau(AbstractF2mPoint p)
        {
            return p.Tau();
        }

        /**
        * Returns the parameter <code>&#956;</code> of the elliptic curve.
        * @param curve The elliptic curve from which to obtain <code>&#956;</code>.
        * The curve must be a Koblitz curve, i.e. <code>a</code> Equals
        * <code>0</code> or <code>1</code> and <code>b</code> Equals
        * <code>1</code>. 
        * @return <code>&#956;</code> of the elliptic curve.
        * @throws ArgumentException if the given ECCurve is not a Koblitz
        * curve.
        */
        public static sbyte GetMu(AbstractF2mCurve curve)
        {
            BigInteger a = curve.A.ToBigInteger();

            sbyte mu;
            if (a.SignValue == 0)
            {
                mu = -1;
            }
            else if (a.Equals(BigInteger.One))
            {
                mu = 1;
            }
            else
            {
                throw new ArgumentException("No Koblitz curve (ABC), TNAF multiplication not possible");
            }
            return mu;
        }

        public static sbyte GetMu(ECFieldElement curveA)
        {
            return (sbyte)(curveA.IsZero ? -1 : 1);
        }

        public static sbyte GetMu(int curveA)
        {
            return (sbyte)(curveA == 0 ? -1 : 1);
        }

        /**
        * Calculates the Lucas Sequence elements <code>U<sub>k-1</sub></code> and
        * <code>U<sub>k</sub></code> or <code>V<sub>k-1</sub></code> and
        * <code>V<sub>k</sub></code>.
        * @param mu The parameter <code>&#956;</code> of the elliptic curve.
        * @param k The index of the second element of the Lucas Sequence to be
        * returned.
        * @param doV If set to true, computes <code>V<sub>k-1</sub></code> and
        * <code>V<sub>k</sub></code>, otherwise <code>U<sub>k-1</sub></code> and
        * <code>U<sub>k</sub></code>.
        * @return An array with 2 elements, containing <code>U<sub>k-1</sub></code>
        * and <code>U<sub>k</sub></code> or <code>V<sub>k-1</sub></code>
        * and <code>V<sub>k</sub></code>.
        */
        public static BigInteger[] GetLucas(sbyte mu, int k, bool doV)
        {
            if (!(mu == 1 || mu == -1)) 
                throw new ArgumentException("mu must be 1 or -1");

            BigInteger u0;
            BigInteger u1;
            BigInteger u2;

            if (doV)
            {
                u0 = BigInteger.Two;
                u1 = BigInteger.ValueOf(mu);
            }
            else
            {
                u0 = BigInteger.Zero;
                u1 = BigInteger.One;
            }

            for (int i = 1; i < k; i++)
            {
                // u2 = mu*u1 - 2*u0;
                BigInteger s = null;
                if (mu == 1)
                {
                    s = u1;
                }
                else
                {
                    // mu == -1
                    s = u1.Negate();
                }
                
                u2 = s.Subtract(u0.ShiftLeft(1));
                u0 = u1;
                u1 = u2;
                //            System.out.println(i + ": " + u2);
                //            System.out.println();
            }

            BigInteger[] retVal = {u0, u1};
            return retVal;
        }

        /**
        * Computes the auxiliary value <code>t<sub>w</sub></code>. If the width is
        * 4, then for <code>mu = 1</code>, <code>t<sub>w</sub> = 6</code> and for
        * <code>mu = -1</code>, <code>t<sub>w</sub> = 10</code> 
        * @param mu The parameter <code>&#956;</code> of the elliptic curve.
        * @param w The window width of the WTNAF.
        * @return the auxiliary value <code>t<sub>w</sub></code>
        */
        public static BigInteger GetTw(sbyte mu, int w) 
        {
            if (w == 4)
            {
                if (mu == 1)
                {
                    return BigInteger.ValueOf(6);
                }
                else
                {
                    // mu == -1
                    return BigInteger.ValueOf(10);
                }
            }
            else
            {
                // For w <> 4, the values must be computed
                BigInteger[] us = GetLucas(mu, w, false);
                BigInteger twoToW = BigInteger.Zero.SetBit(w);
                BigInteger u1invert = us[1].ModInverse(twoToW);
                BigInteger tw;
                tw = BigInteger.Two.Multiply(us[0]).Multiply(u1invert).Mod(twoToW);
                //System.out.println("mu = " + mu);
                //System.out.println("tw = " + tw);
                return tw;
            }
        }

        /**
        * Computes the auxiliary values <code>s<sub>0</sub></code> and
        * <code>s<sub>1</sub></code> used for partial modular reduction. 
        * @param curve The elliptic curve for which to compute
        * <code>s<sub>0</sub></code> and <code>s<sub>1</sub></code>.
        * @throws ArgumentException if <code>curve</code> is not a
        * Koblitz curve (Anomalous Binary Curve, ABC).
        */
        public static BigInteger[] GetSi(AbstractF2mCurve curve)
        {
            if (!curve.IsKoblitz)
                throw new ArgumentException("si is defined for Koblitz curves only");

            int m = curve.FieldSize;
            int a = curve.A.ToBigInteger().IntValue;
            sbyte mu = GetMu(a);
            int shifts = GetShiftsForCofactor(curve.Cofactor);
            int index = m + 3 - a;
            BigInteger[] ui = GetLucas(mu, index, false);

            if (mu == 1)
            {
                ui[0] = ui[0].Negate();
                ui[1] = ui[1].Negate();
            }

            BigInteger dividend0 = BigInteger.One.Add(ui[1]).ShiftRight(shifts);
            BigInteger dividend1 = BigInteger.One.Add(ui[0]).ShiftRight(shifts).Negate();

            return new BigInteger[] { dividend0, dividend1 };
        }

        public static BigInteger[] GetSi(int fieldSize, int curveA, BigInteger cofactor)
        {
            sbyte mu = GetMu(curveA);
            int shifts = GetShiftsForCofactor(cofactor);
            int index = fieldSize + 3 - curveA;
            BigInteger[] ui = GetLucas(mu, index, false);
            if (mu == 1)
            {
                ui[0] = ui[0].Negate();
                ui[1] = ui[1].Negate();
            }

            BigInteger dividend0 = BigInteger.One.Add(ui[1]).ShiftRight(shifts);
            BigInteger dividend1 = BigInteger.One.Add(ui[0]).ShiftRight(shifts).Negate();

            return new BigInteger[] { dividend0, dividend1 };
        }

        protected static int GetShiftsForCofactor(BigInteger h)
        {
            if (h != null && h.BitLength < 4)
            {
                int hi = h.IntValue;
                if (hi == 2)
                    return 1;
                if (hi == 4)
                    return 2;
            }

            throw new ArgumentException("h (Cofactor) must be 2 or 4");
        }

        /**
        * Partial modular reduction modulo
        * <code>(&#964;<sup>m</sup> - 1)/(&#964; - 1)</code>.
        * @param k The integer to be reduced.
        * @param m The bitlength of the underlying finite field.
        * @param a The parameter <code>a</code> of the elliptic curve.
        * @param s The auxiliary values <code>s<sub>0</sub></code> and
        * <code>s<sub>1</sub></code>.
        * @param mu The parameter &#956; of the elliptic curve.
        * @param c The precision (number of bits of accuracy) of the partial
        * modular reduction.
        * @return <code>&#961; := k partmod (&#964;<sup>m</sup> - 1)/(&#964; - 1)</code>
        */
        public static ZTauElement PartModReduction(BigInteger k, int m, sbyte a,
            BigInteger[] s, sbyte mu, sbyte c)
        {
            // d0 = s[0] + mu*s[1]; mu is either 1 or -1
            BigInteger d0;
            if (mu == 1)
            {
                d0 = s[0].Add(s[1]);
            }
            else
            {
                d0 = s[0].Subtract(s[1]);
            }

            BigInteger[] v = GetLucas(mu, m, true);
            BigInteger vm = v[1];

            SimpleBigDecimal lambda0 = ApproximateDivisionByN(
                k, s[0], vm, a, m, c);
            
            SimpleBigDecimal lambda1 = ApproximateDivisionByN(
                k, s[1], vm, a, m, c);

            ZTauElement q = Round(lambda0, lambda1, mu);

            // r0 = n - d0*q0 - 2*s1*q1
            BigInteger r0 = k.Subtract(d0.Multiply(q.u)).Subtract(
                BigInteger.ValueOf(2).Multiply(s[1]).Multiply(q.v));

            // r1 = s1*q0 - s0*q1
            BigInteger r1 = s[1].Multiply(q.u).Subtract(s[0].Multiply(q.v));
            
            return new ZTauElement(r0, r1);
        }

        /**
        * Multiplies a {@link org.bouncycastle.math.ec.AbstractF2mPoint AbstractF2mPoint}
        * by a <code>BigInteger</code> using the reduced <code>&#964;</code>-adic
        * NAF (RTNAF) method.
        * @param p The AbstractF2mPoint to Multiply.
        * @param k The <code>BigInteger</code> by which to Multiply <code>p</code>.
        * @return <code>k * p</code>
        */
        public static AbstractF2mPoint MultiplyRTnaf(AbstractF2mPoint p, BigInteger k)
        {
            AbstractF2mCurve curve = (AbstractF2mCurve)p.Curve;
            int m = curve.FieldSize;
            int a = curve.A.ToBigInteger().IntValue;
            sbyte mu = GetMu(a);
            BigInteger[] s = curve.GetSi();
            ZTauElement rho = PartModReduction(k, m, (sbyte)a, s, mu, (sbyte)10);

            return MultiplyTnaf(p, rho);
        }

        /**
        * Multiplies a {@link org.bouncycastle.math.ec.AbstractF2mPoint AbstractF2mPoint}
        * by an element <code>&#955;</code> of <code><b>Z</b>[&#964;]</code>
        * using the <code>&#964;</code>-adic NAF (TNAF) method.
        * @param p The AbstractF2mPoint to Multiply.
        * @param lambda The element <code>&#955;</code> of
        * <code><b>Z</b>[&#964;]</code>.
        * @return <code>&#955; * p</code>
        */
        public static AbstractF2mPoint MultiplyTnaf(AbstractF2mPoint p, ZTauElement lambda)
        {
            AbstractF2mCurve curve = (AbstractF2mCurve)p.Curve;
            sbyte mu = GetMu(curve.A);
            sbyte[] u = TauAdicNaf(mu, lambda);

            AbstractF2mPoint q = MultiplyFromTnaf(p, u);

            return q;
        }

        /**
        * Multiplies a {@link org.bouncycastle.math.ec.AbstractF2mPoint AbstractF2mPoint}
        * by an element <code>&#955;</code> of <code><b>Z</b>[&#964;]</code>
        * using the <code>&#964;</code>-adic NAF (TNAF) method, given the TNAF
        * of <code>&#955;</code>.
        * @param p The AbstractF2mPoint to Multiply.
        * @param u The the TNAF of <code>&#955;</code>..
        * @return <code>&#955; * p</code>
        */
        public static AbstractF2mPoint MultiplyFromTnaf(AbstractF2mPoint p, sbyte[] u)
        {
            ECCurve curve = p.Curve;
            AbstractF2mPoint q = (AbstractF2mPoint)curve.Infinity;
            AbstractF2mPoint pNeg = (AbstractF2mPoint)p.Negate();
            int tauCount = 0;
            for (int i = u.Length - 1; i >= 0; i--)
            {
                ++tauCount;
                sbyte ui = u[i];
                if (ui != 0)
                {
                    q = q.TauPow(tauCount);
                    tauCount = 0;

                    ECPoint x = ui > 0 ? p : pNeg;
                    q = (AbstractF2mPoint)q.Add(x);
                }
            }
            if (tauCount > 0)
            {
                q = q.TauPow(tauCount);
            }
            return q;
        }

        /**
        * Computes the <code>[&#964;]</code>-adic window NAF of an element
        * <code>&#955;</code> of <code><b>Z</b>[&#964;]</code>.
        * @param mu The parameter &#956; of the elliptic curve.
        * @param lambda The element <code>&#955;</code> of
        * <code><b>Z</b>[&#964;]</code> of which to compute the
        * <code>[&#964;]</code>-adic NAF.
        * @param width The window width of the resulting WNAF.
        * @param pow2w 2<sup>width</sup>.
        * @param tw The auxiliary value <code>t<sub>w</sub></code>.
        * @param alpha The <code>&#945;<sub>u</sub></code>'s for the window width.
        * @return The <code>[&#964;]</code>-adic window NAF of
        * <code>&#955;</code>.
        */
        public static sbyte[] TauAdicWNaf(sbyte mu, ZTauElement lambda,
            sbyte width, BigInteger pow2w, BigInteger tw, ZTauElement[] alpha)
        {
            if (!((mu == 1) || (mu == -1))) 
                throw new ArgumentException("mu must be 1 or -1");

            BigInteger norm = Norm(mu, lambda);

            // Ceiling of log2 of the norm 
            int log2Norm = norm.BitLength;

            // If length(TNAF) > 30, then length(TNAF) < log2Norm + 3.52
            int maxLength = log2Norm > 30 ? log2Norm + 4 + width : 34 + width;

            // The array holding the TNAF
            sbyte[] u = new sbyte[maxLength];

            // 2^(width - 1)
            BigInteger pow2wMin1 = pow2w.ShiftRight(1);

            // Split lambda into two BigIntegers to simplify calculations
            BigInteger r0 = lambda.u;
            BigInteger r1 = lambda.v;
            int i = 0;

            // while lambda <> (0, 0)
            while (!((r0.Equals(BigInteger.Zero))&&(r1.Equals(BigInteger.Zero))))
            {
                // if r0 is odd
                if (r0.TestBit(0)) 
                {
                    // uUnMod = r0 + r1*tw Mod 2^width
                    BigInteger uUnMod
                        = r0.Add(r1.Multiply(tw)).Mod(pow2w);
                    
                    sbyte uLocal;
                    // if uUnMod >= 2^(width - 1)
                    if (uUnMod.CompareTo(pow2wMin1) >= 0)
                    {
                        uLocal = (sbyte) uUnMod.Subtract(pow2w).IntValue;
                    }
                    else
                    {
                        uLocal = (sbyte) uUnMod.IntValue;
                    }
                    // uLocal is now in [-2^(width-1), 2^(width-1)-1]

                    u[i] = uLocal;
                    bool s = true;
                    if (uLocal < 0) 
                    {
                        s = false;
                        uLocal = (sbyte)-uLocal;
                    }
                    // uLocal is now >= 0

                    if (s) 
                    {
                        r0 = r0.Subtract(alpha[uLocal].u);
                        r1 = r1.Subtract(alpha[uLocal].v);
                    }
                    else
                    {
                        r0 = r0.Add(alpha[uLocal].u);
                        r1 = r1.Add(alpha[uLocal].v);
                    }
                }
                else
                {
                    u[i] = 0;
                }

                BigInteger t = r0;

                if (mu == 1)
                {
                    r0 = r1.Add(r0.ShiftRight(1));
                }
                else
                {
                    // mu == -1
                    r0 = r1.Subtract(r0.ShiftRight(1));
                }
                r1 = t.ShiftRight(1).Negate();
                i++;
            }
            return u;
        }

        /**
        * Does the precomputation for WTNAF multiplication.
        * @param p The <code>ECPoint</code> for which to do the precomputation.
        * @param a The parameter <code>a</code> of the elliptic curve.
        * @return The precomputation array for <code>p</code>. 
        */
        public static AbstractF2mPoint[] GetPreComp(AbstractF2mPoint p, sbyte a)
        {
            sbyte[][] alphaTnaf = (a == 0) ? Tnaf.Alpha0Tnaf : Tnaf.Alpha1Tnaf;

            AbstractF2mPoint[] pu = new AbstractF2mPoint[(uint)(alphaTnaf.Length + 1) >> 1];
            pu[0] = p;

            uint precompLen = (uint)alphaTnaf.Length;
            for (uint i = 3; i < precompLen; i += 2)
            {
                pu[i >> 1] = Tnaf.MultiplyFromTnaf(p, alphaTnaf[i]);
            }

            p.Curve.NormalizeAll(pu);

            return pu;
        }
    }
}