ECAlgorithms.cs 16 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
using System;

using Org.BouncyCastle.Math.EC.Endo;
using Org.BouncyCastle.Math.EC.Multiplier;
using Org.BouncyCastle.Math.Field;

namespace Org.BouncyCastle.Math.EC
{
    public class ECAlgorithms
    {
        public static bool IsF2mCurve(ECCurve c)
        {
            return IsF2mField(c.Field);
        }

        public static bool IsF2mField(IFiniteField field)
        {
            return field.Dimension > 1 && field.Characteristic.Equals(BigInteger.Two)
                && field is IPolynomialExtensionField;
        }

        public static bool IsFpCurve(ECCurve c)
        {
            return IsFpField(c.Field);
        }

        public static bool IsFpField(IFiniteField field)
        {
            return field.Dimension == 1;
        }

        public static ECPoint SumOfMultiplies(ECPoint[] ps, BigInteger[] ks)
        {
            if (ps == null || ks == null || ps.Length != ks.Length || ps.Length < 1)
                throw new ArgumentException("point and scalar arrays should be non-null, and of equal, non-zero, length");

            int count = ps.Length;
            switch (count)
            {
                case 1:
                    return ps[0].Multiply(ks[0]);
                case 2:
                    return SumOfTwoMultiplies(ps[0], ks[0], ps[1], ks[1]);
                default:
                    break;
            }

            ECPoint p = ps[0];
            ECCurve c = p.Curve;

            ECPoint[] imported = new ECPoint[count];
            imported[0] = p;
            for (int i = 1; i < count; ++i)
            {
                imported[i] = ImportPoint(c, ps[i]);
            }

            GlvEndomorphism glvEndomorphism = c.GetEndomorphism() as GlvEndomorphism;
            if (glvEndomorphism != null)
            {
                return ValidatePoint(ImplSumOfMultipliesGlv(imported, ks, glvEndomorphism));
            }

            return ValidatePoint(ImplSumOfMultiplies(imported, ks));
        }

        public static ECPoint SumOfTwoMultiplies(ECPoint P, BigInteger a, ECPoint Q, BigInteger b)
        {
            ECCurve cp = P.Curve;
            Q = ImportPoint(cp, Q);

            // Point multiplication for Koblitz curves (using WTNAF) beats Shamir's trick
            {
                AbstractF2mCurve f2mCurve = cp as AbstractF2mCurve;
                if (f2mCurve != null && f2mCurve.IsKoblitz)
                {
                    return ValidatePoint(P.Multiply(a).Add(Q.Multiply(b)));
                }
            }

            GlvEndomorphism glvEndomorphism = cp.GetEndomorphism() as GlvEndomorphism;
            if (glvEndomorphism != null)
            {
                return ValidatePoint(
                    ImplSumOfMultipliesGlv(new ECPoint[] { P, Q }, new BigInteger[] { a, b }, glvEndomorphism));
            }

            return ValidatePoint(ImplShamirsTrickWNaf(P, a, Q, b));
        }

        /*
        * "Shamir's Trick", originally due to E. G. Straus
        * (Addition chains of vectors. American Mathematical Monthly,
        * 71(7):806-808, Aug./Sept. 1964)
        *  
        * Input: The points P, Q, scalar k = (km?, ... , k1, k0)
        * and scalar l = (lm?, ... , l1, l0).
        * Output: R = k * P + l * Q.
        * 1: Z <- P + Q
        * 2: R <- O
        * 3: for i from m-1 down to 0 do
        * 4:        R <- R + R        {point doubling}
        * 5:        if (ki = 1) and (li = 0) then R <- R + P end if
        * 6:        if (ki = 0) and (li = 1) then R <- R + Q end if
        * 7:        if (ki = 1) and (li = 1) then R <- R + Z end if
        * 8: end for
        * 9: return R
        */
        public static ECPoint ShamirsTrick(ECPoint P, BigInteger k, ECPoint Q, BigInteger l)
        {
            ECCurve cp = P.Curve;
            Q = ImportPoint(cp, Q);

            return ValidatePoint(ImplShamirsTrickJsf(P, k, Q, l));
        }

        public static ECPoint ImportPoint(ECCurve c, ECPoint p)
        {
            ECCurve cp = p.Curve;
            if (!c.Equals(cp))
                throw new ArgumentException("Point must be on the same curve");

            return c.ImportPoint(p);
        }

        public static void MontgomeryTrick(ECFieldElement[] zs, int off, int len)
        {
            MontgomeryTrick(zs, off, len, null);
        }

        public static void MontgomeryTrick(ECFieldElement[] zs, int off, int len, ECFieldElement scale)
        {
            /*
             * Uses the "Montgomery Trick" to invert many field elements, with only a single actual
             * field inversion. See e.g. the paper:
             * "Fast Multi-scalar Multiplication Methods on Elliptic Curves with Precomputation Strategy Using Montgomery Trick"
             * by Katsuyuki Okeya, Kouichi Sakurai.
             */

            ECFieldElement[] c = new ECFieldElement[len];
            c[0] = zs[off];

            int i = 0;
            while (++i < len)
            {
                c[i] = c[i - 1].Multiply(zs[off + i]);
            }

            --i;

            if (scale != null)
            {
                c[i] = c[i].Multiply(scale);
            }

            ECFieldElement u = c[i].Invert();

            while (i > 0)
            {
                int j = off + i--;
                ECFieldElement tmp = zs[j];
                zs[j] = c[i].Multiply(u);
                u = u.Multiply(tmp);
            }

            zs[off] = u;
        }

        /**
         * Simple shift-and-add multiplication. Serves as reference implementation
         * to verify (possibly faster) implementations, and for very small scalars.
         * 
         * @param p
         *            The point to multiply.
         * @param k
         *            The multiplier.
         * @return The result of the point multiplication <code>kP</code>.
         */
        public static ECPoint ReferenceMultiply(ECPoint p, BigInteger k)
        {
            BigInteger x = k.Abs();
            ECPoint q = p.Curve.Infinity;
            int t = x.BitLength;
            if (t > 0)
            {
                if (x.TestBit(0))
                {
                    q = p;
                }
                for (int i = 1; i < t; i++)
                {
                    p = p.Twice();
                    if (x.TestBit(i))
                    {
                        q = q.Add(p);
                    }
                }
            }
            return k.SignValue < 0 ? q.Negate() : q;
        }

        public static ECPoint ValidatePoint(ECPoint p)
        {
            if (!p.IsValid())
                throw new ArgumentException("Invalid point", "p");

            return p;
        }

        internal static ECPoint ImplShamirsTrickJsf(ECPoint P, BigInteger k, ECPoint Q, BigInteger l)
        {
            ECCurve curve = P.Curve;
            ECPoint infinity = curve.Infinity;

            // TODO conjugate co-Z addition (ZADDC) can return both of these
            ECPoint PaddQ = P.Add(Q);
            ECPoint PsubQ = P.Subtract(Q);

            ECPoint[] points = new ECPoint[] { Q, PsubQ, P, PaddQ };
            curve.NormalizeAll(points);

            ECPoint[] table = new ECPoint[] {
            points[3].Negate(), points[2].Negate(), points[1].Negate(),
            points[0].Negate(), infinity, points[0],
            points[1], points[2], points[3] };

            byte[] jsf = WNafUtilities.GenerateJsf(k, l);

            ECPoint R = infinity;

            int i = jsf.Length;
            while (--i >= 0)
            {
                int jsfi = jsf[i];

                // NOTE: The shifting ensures the sign is extended correctly
                int kDigit = ((jsfi << 24) >> 28), lDigit = ((jsfi << 28) >> 28);

                int index = 4 + (kDigit * 3) + lDigit;
                R = R.TwicePlus(table[index]);
            }

            return R;
        }

        internal static ECPoint ImplShamirsTrickWNaf(ECPoint P, BigInteger k,
            ECPoint Q, BigInteger l)
        {
            bool negK = k.SignValue < 0, negL = l.SignValue < 0;

            k = k.Abs();
            l = l.Abs();

            int widthP = System.Math.Max(2, System.Math.Min(16, WNafUtilities.GetWindowSize(k.BitLength)));
            int widthQ = System.Math.Max(2, System.Math.Min(16, WNafUtilities.GetWindowSize(l.BitLength)));

            WNafPreCompInfo infoP = WNafUtilities.Precompute(P, widthP, true);
            WNafPreCompInfo infoQ = WNafUtilities.Precompute(Q, widthQ, true);

            ECPoint[] preCompP = negK ? infoP.PreCompNeg : infoP.PreComp;
            ECPoint[] preCompQ = negL ? infoQ.PreCompNeg : infoQ.PreComp;
            ECPoint[] preCompNegP = negK ? infoP.PreComp : infoP.PreCompNeg;
            ECPoint[] preCompNegQ = negL ? infoQ.PreComp : infoQ.PreCompNeg;

            byte[] wnafP = WNafUtilities.GenerateWindowNaf(widthP, k);
            byte[] wnafQ = WNafUtilities.GenerateWindowNaf(widthQ, l);

            return ImplShamirsTrickWNaf(preCompP, preCompNegP, wnafP, preCompQ, preCompNegQ, wnafQ);
        }

        internal static ECPoint ImplShamirsTrickWNaf(ECPoint P, BigInteger k, ECPointMap pointMapQ, BigInteger l)
        {
            bool negK = k.SignValue < 0, negL = l.SignValue < 0;

            k = k.Abs();
            l = l.Abs();

            int width = System.Math.Max(2, System.Math.Min(16, WNafUtilities.GetWindowSize(System.Math.Max(k.BitLength, l.BitLength))));

            ECPoint Q = WNafUtilities.MapPointWithPrecomp(P, width, true, pointMapQ);
            WNafPreCompInfo infoP = WNafUtilities.GetWNafPreCompInfo(P);
            WNafPreCompInfo infoQ = WNafUtilities.GetWNafPreCompInfo(Q);

            ECPoint[] preCompP = negK ? infoP.PreCompNeg : infoP.PreComp;
            ECPoint[] preCompQ = negL ? infoQ.PreCompNeg : infoQ.PreComp;
            ECPoint[] preCompNegP = negK ? infoP.PreComp : infoP.PreCompNeg;
            ECPoint[] preCompNegQ = negL ? infoQ.PreComp : infoQ.PreCompNeg;

            byte[] wnafP = WNafUtilities.GenerateWindowNaf(width, k);
            byte[] wnafQ = WNafUtilities.GenerateWindowNaf(width, l);

            return ImplShamirsTrickWNaf(preCompP, preCompNegP, wnafP, preCompQ, preCompNegQ, wnafQ);
        }

        private static ECPoint ImplShamirsTrickWNaf(ECPoint[] preCompP, ECPoint[] preCompNegP, byte[] wnafP,
            ECPoint[] preCompQ, ECPoint[] preCompNegQ, byte[] wnafQ)
        {
            int len = System.Math.Max(wnafP.Length, wnafQ.Length);

            ECCurve curve = preCompP[0].Curve;
            ECPoint infinity = curve.Infinity;

            ECPoint R = infinity;
            int zeroes = 0;

            for (int i = len - 1; i >= 0; --i)
            {
                int wiP = i < wnafP.Length ? (int)(sbyte)wnafP[i] : 0;
                int wiQ = i < wnafQ.Length ? (int)(sbyte)wnafQ[i] : 0;

                if ((wiP | wiQ) == 0)
                {
                    ++zeroes;
                    continue;
                }

                ECPoint r = infinity;
                if (wiP != 0)
                {
                    int nP = System.Math.Abs(wiP);
                    ECPoint[] tableP = wiP < 0 ? preCompNegP : preCompP;
                    r = r.Add(tableP[nP >> 1]);
                }
                if (wiQ != 0)
                {
                    int nQ = System.Math.Abs(wiQ);
                    ECPoint[] tableQ = wiQ < 0 ? preCompNegQ : preCompQ;
                    r = r.Add(tableQ[nQ >> 1]);
                }

                if (zeroes > 0)
                {
                    R = R.TimesPow2(zeroes);
                    zeroes = 0;
                }

                R = R.TwicePlus(r);
            }

            if (zeroes > 0)
            {
                R = R.TimesPow2(zeroes);
            }

            return R;
        }

        internal static ECPoint ImplSumOfMultiplies(ECPoint[] ps, BigInteger[] ks)
        {
            int count = ps.Length;
            bool[] negs = new bool[count];
            WNafPreCompInfo[] infos = new WNafPreCompInfo[count];
            byte[][] wnafs = new byte[count][];

            for (int i = 0; i < count; ++i)
            {
                BigInteger ki = ks[i]; negs[i] = ki.SignValue < 0; ki = ki.Abs();

                int width = System.Math.Max(2, System.Math.Min(16, WNafUtilities.GetWindowSize(ki.BitLength)));
                infos[i] = WNafUtilities.Precompute(ps[i], width, true);
                wnafs[i] = WNafUtilities.GenerateWindowNaf(width, ki);
            }

            return ImplSumOfMultiplies(negs, infos, wnafs);
        }

        internal static ECPoint ImplSumOfMultipliesGlv(ECPoint[] ps, BigInteger[] ks, GlvEndomorphism glvEndomorphism)
        {
            BigInteger n = ps[0].Curve.Order;

            int len = ps.Length;

            BigInteger[] abs = new BigInteger[len << 1];
            for (int i = 0, j = 0; i < len; ++i)
            {
                BigInteger[] ab = glvEndomorphism.DecomposeScalar(ks[i].Mod(n));
                abs[j++] = ab[0];
                abs[j++] = ab[1];
            }

            ECPointMap pointMap = glvEndomorphism.PointMap;
            if (glvEndomorphism.HasEfficientPointMap)
            {
                return ECAlgorithms.ImplSumOfMultiplies(ps, pointMap, abs);
            }

            ECPoint[] pqs = new ECPoint[len << 1];
            for (int i = 0, j = 0; i < len; ++i)
            {
                ECPoint p = ps[i], q = pointMap.Map(p);
                pqs[j++] = p;
                pqs[j++] = q;
            }

            return ECAlgorithms.ImplSumOfMultiplies(pqs, abs);
        }

        internal static ECPoint ImplSumOfMultiplies(ECPoint[] ps, ECPointMap pointMap, BigInteger[] ks)
        {
            int halfCount = ps.Length, fullCount = halfCount << 1;

            bool[] negs = new bool[fullCount];
            WNafPreCompInfo[] infos = new WNafPreCompInfo[fullCount];
            byte[][] wnafs = new byte[fullCount][];

            for (int i = 0; i < halfCount; ++i)
            {
                int j0 = i << 1, j1 = j0 + 1;

                BigInteger kj0 = ks[j0]; negs[j0] = kj0.SignValue < 0; kj0 = kj0.Abs();
                BigInteger kj1 = ks[j1]; negs[j1] = kj1.SignValue < 0; kj1 = kj1.Abs();

                int width = System.Math.Max(2, System.Math.Min(16, WNafUtilities.GetWindowSize(System.Math.Max(kj0.BitLength, kj1.BitLength))));

                ECPoint P = ps[i], Q = WNafUtilities.MapPointWithPrecomp(P, width, true, pointMap);
                infos[j0] = WNafUtilities.GetWNafPreCompInfo(P);
                infos[j1] = WNafUtilities.GetWNafPreCompInfo(Q);
                wnafs[j0] = WNafUtilities.GenerateWindowNaf(width, kj0);
                wnafs[j1] = WNafUtilities.GenerateWindowNaf(width, kj1);
            }

            return ImplSumOfMultiplies(negs, infos, wnafs);
        }

        private static ECPoint ImplSumOfMultiplies(bool[] negs, WNafPreCompInfo[] infos, byte[][] wnafs)
        {
            int len = 0, count = wnafs.Length;
            for (int i = 0; i < count; ++i)
            {
                len = System.Math.Max(len, wnafs[i].Length);
            }

            ECCurve curve = infos[0].PreComp[0].Curve;
            ECPoint infinity = curve.Infinity;

            ECPoint R = infinity;
            int zeroes = 0;

            for (int i = len - 1; i >= 0; --i)
            {
                ECPoint r = infinity;

                for (int j = 0; j < count; ++j)
                {
                    byte[] wnaf = wnafs[j];
                    int wi = i < wnaf.Length ? (int)(sbyte)wnaf[i] : 0;
                    if (wi != 0)
                    {
                        int n = System.Math.Abs(wi);
                        WNafPreCompInfo info = infos[j];
                        ECPoint[] table = (wi < 0 == negs[j]) ? info.PreComp : info.PreCompNeg;
                        r = r.Add(table[n >> 1]);
                    }
                }

                if (r == infinity)
                {
                    ++zeroes;
                    continue;
                }

                if (zeroes > 0)
                {
                    R = R.TimesPow2(zeroes);
                    zeroes = 0;
                }

                R = R.TwicePlus(r);
            }

            if (zeroes > 0)
            {
                R = R.TimesPow2(zeroes);
            }

            return R;
        }
    }
}